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Abstract. Our aim is to solve the feature subset selection problem
with thousands of variables using an incremental procedure. The pro-
cedure combines incrementally the outputs of non-scalable search-and-
score Bayesian network structure learning methods that are run on much
smaller sets of variables. We assess the scalability, the performance and
the stability of the procedure through several experiments on synthetic
and real databases scaling up to 139 351 variables. Our method is shown
to be efficient in terms of both running time and accuracy.

1 Introduction

Feature subset selection (FSS for short) is an essential component of quantitative
modeling, data-driven construction of decision support models or even computer-
assisted discovery. No a priori information or selection of variables is required.
Therefore, no previous knowledge premise will bias the final models. The FSS
enables the classification model to achieve good or even better solutions with a
restricted subset of features, and it helps the human expert to focus on a relevant
subset of features. However, databases have increased many fold in recent years
and most FSS algorithms do not scale to thousands of variables. Also, large-
scale databases presents enormous opportunities and challenges for knowledge
discovery and machine learning.

There have been a number of comparative studies for feature selection but few
scale up to (say) 100 000 variables. Moreover, findings reported at low dimensions
do not necessarily apply in high dimensions. While SVM are efficient and well
suited for scalable feature selection [1] (e.g., SVM-RFE stand for SVM Recursive
Feature Elimination), there is still much room for improvement. In microarray
data analysis for instance, it is common to use statistical testing to control
precision (often referred to as the false discovery rate) while maximizing recall,
in order to obtain high quality gene (feature) sets. [1] show that none of the above
SVM-based method provide such control. Moreover, not only model performance
but also robustness of the feature selection process should be taken into account
[2]. [3] show experimentally that SVM-RFE is highly sensitive to the "filter-out"
factor and that the SVM-RFE is an unstable algorithm. [4, 5] showed recently
through extensive comparisons with high-dimensional genomic data that none
of the considered feature-selection methods performs best across all scenarios.
Thus, there is still room for work to be conducted in this area.



In this paper, we report the use of a probabilistic FSS technique to identify
"strongly" relevant features, among thousands of potentially irrelevant and re-
dundant features. A principled solution to the FSS problem is to determine the
Markov boundary (MB for short) of the class variable. A MB of a variable T is
any minimal subset of U (the full set of variables) that renders the rest of U inde-
pendent of T . If the probability distribution underlying the data can be faithfully
represented by a Bayesian network, the MB of T is unique. In recent years, there
have been a growing interest in inducing the MB automatically from data. Very
powerful correct, scalable and data-efficient constraint-based (CB) algorithms
have been proposed recently [6–9]. CB discovery methods search a database for
conditional independence relations. In contrast to search-and-score methods, CB
methods are able to construct the local MB structure without having to construct
the whole BN first. Hence their ability to scale up to thousands of variables. This
was, so far, a key advantage of CB methods over search-and-score methods.

Our specific aim is to solve the feature subset selection (FSS) problem with
thousands of variables using an incremental procedure that combines the result of
search-and-score methods run on small sets of variables. We assess the accuracy,
the scalability and the robustness of the procedure through several experiments
on synthetic and real-world databases scaling up to 139 351 variables.

2 Feature selection

Feature selection techniques can be divided into three categories, depending on
how they interact with the classifier. Filter methods directly operate on the
dataset, and provide a feature weighting, ranking or subset as output. These
methods have the advantage of being fast and independent of the classification
model, but at the cost of inferior results. Wrapper methods perform a search in
the space of feature subsets, guided by the outcome of the model (e.g. classifi-
cation performance on a cross-validation of the training set). They often report
better results than filter methods, but at the price of an increased computational
cost. Finally, embedded methods use internal information of the classification
model to perform feature selection (e.g. use of the weight vector in support vec-
tor machines). They often provide a good trade-off between performance and
computational cost.

Finding the minimal set of features require an exhaustive search among all
subsets of relevant variables, which is an NP-complete problem, and may not
be unique. In this study, the FSS is achieved in the context of determining the
Markov boundary of the class variable that we want to predict. Markov boundary
(MB for short) learning techniques can be regarded as in between filter and
embedded methods. They solve the feature subset selection (FSS) problem and,
in the meantime, they build a local Bayesian network around the target variable
that can be used afterwards as a probabilistic classifier.



3 Bayesian networks

For the paper to be accessible to those outside the domain, we recall first the
principle of Bayesian network. We denote a variable with an upper-case, X, and
value of that variable by the same lower-case, x. We denote a set of variables
by upper-case bold-face, Z, and we use the corresponding lower-case bold-face,
z, to denote an assignment of value to each variable in the set. We denote the
conditional independence of the variable X and Y given Z, in some distribution
P with X ⊥P Y |Z. In this paper, we only deal with discrete random variables.

Formally, a BN is a tuple < G, P >, where G =< V, E > is a directed
acyclic graph (DAG) with nodes representing the random variables V and P
a joint probability distribution on V. In addition, G and P must satisfy the
Markov condition: every variable, X ∈ V, is independent of any subset of its
non-descendant variables conditioned on the set of its parents, denoted by PaGi .

A Markov blanket MT of the T is any set of variables such that T is condition-
ally independent of all the remaining variables given MT . A Markov boundary,
MBT , of T is any Markov blanket such that none of its proper subsets is a
Markov blanket of T . We say that < G, P > satisfies the faithfulness condition
when G entails all and only conditional independencies in P .

Theorem 1 Suppose < G, P > satisfies the faithfulness condition. Then X and
Y are not adjacent in G iff ∃Z ∈ V \ {X ∪ Y } such that X ⊥P Y |Z. Moreover,
for all X, the set of parents, children of X, and parents of children of X is the
unique Markov boundary of X.

A proof can be found for instance in [10]. We denote by PCT , the set of
parents and children of T in G, and by SPT , the set of spouses of T in G. The
spouses of T are the parents of the children of T . These sets are unique for all
G, such that < G, P > is faithful and so we will drop the superscript G.

Two graphs are said equivalent iff they encode the same set of conditional
independencies via the d-separation criterion. The equivalence class of a DAG
G is a set of DAGs that are equivalent to G. The next result showed by [11],
establishes that equivalent graphs have the same undirected graph but might
disagree on the direction of some of the arcs.

Theorem 2 Two DAGs are equivalent iff they have the same underlying undi-
rected graph and the same set of v-structures (i.e. converging edges into the same
node, such as X → Y ← Z.

Moreover, an equivalence class of network structures can be uniquely rep-
resented by a completed partially directed DAG (CPDAG), also called a DAG
pattern. The DAG pattern is defined as the graph that has the same links as the
DAGs in the equivalence class and has oriented all and only the edges common
to all the DAGs in the equivalence class.



Algorithm 1 Generic Incremental FSS by MB Search
1: function IFSS(D, target, selsize, V ars)
2: MB ← ∅
3: repeat
4: Testvars← {target} ∪MB
5: Testvars← Testvars ∪ selection(selsize)
6: G← BNLearning(D, T estvars)
7: MB ← extract_MB(G) . MB extraction
8: until stop_criterion
9: return MB . features = variables in MB
10: end function

4 Incremental MB structure learning for scalable FSS

The key idea in this paper is that an incremental procedure could help in al-
leviating the complexity obstacle by aggregating the outputs of several feature
selectors working on much fewer variables. More specifically, a collection of sin-
gle FSS models is run on small subsets of variables in incremental fashion. The
output of one feature selector serves as input to the next. The feature selector
used in our method is based on a BN structure identification algorithm.

Algorithm 1 displays our incremental feature selection process based on
Markov Boundary search. Input parameters are:

- D: data used for supervised learning,
- target: the target variable,
- selsize: number of new variables at each iteration,
- V ars: set of variables except the target variable.

Standard BNLearning methods do not scale to high-dimensional data sets of
variables. The aim of the meta-procedure is to learn many small MBs (in regard
to the whole set of variables) from many small subsets of variables. BNLearning
can be implemented by any BN structure algorithm. In this study, it is im-
plemented with the GES scoring-based greedy search algorithm discussed by
Chickering in [12].

At the beginning, the set of variables, Testvars, used to learn a Bayesian
network, G, is chosen at random. A first Markov Boundary, MB, is extracted
from G. At each iteration, variables in MB are kept into the set Testvars
and some other variables are added by a uniform random selection without
replacement. The size of this selection, selsize, is adapted according to the size
of the Markov Boundary, MB. Our variables selection process assumes that,
in the first part of the algorithm, each variable of V ars is selected once; then,
when all variables have been selected once, the process restart with the whole set
of variables, V ars. The algorithm stops when all variables have been selected
twice. At the end, the selected features are returned. Under the faithfulness
assumptions and assuming that the induction algorithm is correct, IFSS return



the correct Markov Boundary. This a sample limit property. In practice, our hope
is to output the features that GES would have found on the complete database.

Indeed, after the first part of algorithm (when all variables have been selected
once), MB contains all the parents and the children of the target, because by
definition, the variable adjacent to the target cannot be d-separated from the
target, given any other variable. During the second part of the algorithm (when
all variables have been selected at least twice), the spouses of the target enter
the candidate MB set.

5 Experiments

In this section, we assess the accuracy, the scalability and the robustness of
IFSS through several empirical experiments on benchmark data sets. We use a
state-of-the-art search-and-score BN structure learning algorithm called GES as
our BN learner (BNLearning). First, we compare IFSS against GES in terms
of accuracy on several synthetic data sets. Second, we assess the scalability of
IFSS on a high-dimensional data sets that was provided at the KDD-Cup 2001.
Third, we assess the IFSS’s robustness.

5.1 Accuracy

Benchmark # var # edges target MB size # samples
ASIA 8 8 OR 5 10 000
ASIA8 64 64 OR 5 10 000
ALARM 37 46 HR 8 30 000
INSULIN 35 52 IPA 18 50 000
INSURANCE 27 52 Accident 10 30 000
HAILFINDER 56 66 Scenario 17 50 000

Table 1. Description of the Bayesian networks used in these experiments to assess
the comparative accuracy of IFSS and GES Markov boundary discovery on the target
variable.

We report here the results of our experiments on six common benchmarks:
ASIA, ASIA8 (ASIA tilled 8 times), ALARM, INSULIN, INSURANCE and
HAILFINDER, (see [8] and references therein). For ASIA8, the tiling is per-
formed in a way that maintains the structural and probabilistic properties of
the original network, ASIA, in the tiled network. Description of the benchmarks
is showed in Table 1. For each benchmark, 10 databases with independent and
identically distributed samples were generated by logic sampling. The amount of
data was chosen large enough to avoid the bias due to a lack of data. The task
is to learn the MB of the variable that appears in the third column in Table 1.
The size of the MB varies from 5 to 18 variables as may be observed. We com-
pare IFSS against GES in terms of true positive rate (TPR, i.e., the number of



true positives variables in the output divided by the number of variables in the
output), false positive rate (FPR, i.e., the number of false positives divided by
the the number of variables in the output), the Kappa index (κ), the weighted
accuracy (WAcc), computed as the average of the accuracy on true positives
and the accuracy on true negatives and finally, the time in seconds. Kappa is
a measure that assesses improvement over chance is appropriate. The following
ranges of agreement for the Kappa statistic suggested in the literature are: poor
K < 0.4, good 0.4 < K < 0.75 and excellent K > 0.75. In all our experiments,
GES is trained to maximize the Bayesian Dirichlet scoring criterion defined as :

BD(B | D) = p(B) ·
n∏

i=1

qi∏
j=1

Γ (αij)

Γ (Nij + αij)

ri∏
k=1

Γ (Nijk + αijk)

Γ (αijk)

Note that no a priori information structure is used for tests on synthetic
data (i.e., p(B) is uniform). Moreover, the prior on parameters is set so as to be
non-informative, that is, an equivalent uniform Dirichlet prior with an equivalent
sample size (ESS) equal to the greatest variable modality (see [10] for details).
Table 2 summarizes the average performance indexes over 10 runs for each bench-
mark. As may be observed, IFSS performs as well as GES on all benchmarks,
except on INSURANCE where IFSS outperform GES by a noticeable margin.
This is quite a surprise as IFSS was not designed to outperform the underlying
BN structure learning algorithm (here GES) but only to be scalable.

GES IFSS
κ TPR FPR WAcc Time κ TPR FPR WAcc Time

ASIA 0.959 1.000 0.050 0.975 0.10 0.959 1.000 0.050 0.975 0.06

ASIA8 0.867 1.000 0.024 0.988 27.87 0.834 1.000 0.031 0.984 1.29

ALARM 0.916 0.875 0.000 0.938 6.79 0.916 0.875 0.000 0.938 2.56

INSULIN 0.840 0.933 0.094 0.920 15.16 0.870 0.933 0.063 0.935 7.83

INSURANCE 0.663 0.700 0.063 0.819 5.81 0.858 0.860 0.019 0.921 2.60

HAILFINDER 0.589 0.571 0.037 0.767 48.71 0.517 0.471 0.016 0.727 6.19

Table 2. Average performance of IFSS (with GES as underlying BN structure learning
algorithm) and GES

In Table 3, the same indexes of accuracy are reported; the aim is to recover
the MB given by GES (and not the true MB anymore). For instance, a True
Positive is a variable given by GES and found by IFSS, etc.. IFSS is very close
to GES in most cases. Some significant differences are observed on Hailfinder
between IFSS and GES, output of IFSS is closer to the true MB than output of
GES (see in Table Table 2). Moreover, the last column indicates the time saving
when IFSS is used instead of GES.



IFSS against GES
κ TPR FPR WAcc Time saving

ASIA 1.000± 0.000 1.000± 0.000 0.000± 0.000 1.000± 0.000 0.04± 0.04

ASIA8 0.900± 0.107 0.940± 0.102 0.014± 0.014 0.963± 0.055 26.58± 1.72

ALARM 1.000± 0.000 1.000± 0.000 0.000± 0.000 1.000± 0.000 4.23± 2.21

INSULIN 0.959± 0.049 0.968± 0.037 0.007± 0.021 0.980± 0.023 7.34± 1.31

INSURANCE 0.730± 0.058 0.863± 0.031 0.111± 0.037 0.876± 0.025 3.21± 2.47

HAILFINDER 0.490± 0.093 0.530± 0.200 0.062± 0.058 0.734± 0.077 42.52± 33.73
Table 3. Average performance of IFSS where the task is to recover the variables output
by GES

5.2 Scalability

In this section, experiments demonstrate the ability of IFSS to solve a real
world FSS problem involving thousands of features. We consider the THROM-
BIN database which was provided by DuPont Pharmaceuticals for KDD Cup
2001. It is exemplary of a real drug design [13]. The training set contains 1909
instances characterized by 139351 binary features. The features describe the
three-dimensional properties of the compounds. Each compound is labelled with
one out of two classes, either it binds to the target site or not. The task of KDD
Cup 2001 was to learn a classifier from 1909 given compounds (learning data) in
order to predict binding affinity and, thus, the potential of a compound as anti-
clotting agent. The classifiers submitted to KDD Cup 2001 were evaluated on
the remaining 634 compounds (testing data) as the weighted average (WAcc) of
the accuracy on true binding compounds and the accuracy on true non-binding
compounds. The THROMBIN database is challenging for three reasons. First,
it has a huge number of features. Second, the learning data are extremely imbal-
anced: Only 42 out of the 1909 compounds bind. Third, the testing data are not
sampled from the same probability distribution as the learning data, because
the compounds in the testing data were synthesized based on the assay results
recorded in the learning data. Scoring higher than 60% accuracy is impressive
as noted in [6].

IFSS, with GES as the MB learner, was run 61 times in the time we have
disposed for our experiments, with a prior over structures arbitrary fixed to
10−16×f , where f is the number of free parameters in the DAG. The outputs
were used as input of Naive Bayesian Classifier, and a classification on the test
data was perfomed. As shown in Figure 3, IFSS scores between 36% (really bad)
to 71% with an average 55% and only 46 runs of IFSS score more than 50%
weighted accuracy, i.e. the random classifier. These results are comparable to
MBOR [7] and IAMB [14] that achieve respectively 53% (over 10 runs) and 54%
(both over 114 runs). This is however worse than PCMB [6] that achieves 63%
(over 114 runs). Of course, we have no idea what GES scores on such data since
GES do not scale to such high-dimensional database. Note that each launch of
IFSS lasted approximately 3 hours, which is the same order of magnitude as the
other algorithms mentioned above.



Nonetheless, the best MB over 61 runs consists of five variables 3392, 10695,
23406, 79651 and 85738. This MB is depicted in Figure 2. It scores 71,1% which
is impressive according to [13, 6]. It worth mentioning that J. Cheng, the winner
of the KDD cup 2001, only scores 71.1% accuracy and 68.4% weighted accu-
racy with four variables: 10695, 16794, 79651 and 91839. He used a Bayesian
classifier to assess the accuracy of his feature set. It is shown in Figure 1. As
may be seen, two variables are common with the winner’s selection. IFFS out-
puts the THROMBIN MB in about 220 minutes on our laptop (2.6GHz Intel R©

CoreTM 2 Duo with 1 GB of RAM). Of course, this time is highly dependent
our MATLAB R© implementation, and may significantly be reduced if written in
C/C++ for instance.

The Figure 5 represents the ROC curves of the classifier given by IFSS with
the best MB as input. The area under ROC curve is a well-known performance
measurement. The ROC curve is the 2-D plot of sensitivity and 1-specificity
acquired by applying a sequence of arbitrary cut-off threshold to the probabilities
generated by the predictive model. A clear difference is observed between the
ROC curve on the test set (in plain line) and the ROC curve on the training
set (in dotted lineline, obtained by 10-fold cross validation). The reason is that
the testing data was not sampled from the same probability distribution as the
learning data, hence the difficulty of the task. The area under curve (AUC) is
0.6978 on the test set. This classifier scores 69% (and 71% when constructing a
naive BN with the same variables) which seems highly competitive compared to
PCMB [15] and IAMB [14] that achieves respectively 63% and 54% as shown in
[6]. Table 4 reports the scores obtained with the best MB classifiers constructed
from the sets of variables given by the respective algorithms.

IFSS Cheng
κ TPR FPR Acc WAcc κ TPR FPR Acc WAcc

Output model 0.420 0.467 0.085 0.809 0.691 0.316 0.633 0.264 0.711 0.684

NaiveBN 0.437 0.547 0.120 0.801 0.713 0.297 0.600 0.258 0.708 0.671

SVM 0.464 0.500 0.076 0.823 0.712 0.312 0.313 0.056 0.795 0.629

RForest 0.439 0.513 0.099 0.809 0.707 0.312 0.313 0.056 0.795 0.629
Table 4. Results of classifiers with the output-model of the algorithm, the naive
bayesian network model, the support vector machine classifier and the random for-
est classifier

5.3 Robustness

When using FSS on data sets with large number of features, but a relatively
small number of samples, not only model performance but also robustness of
the FSS process is important. For instance, in microarray analysis, domain ex-
perts clearly prefer a stable gene selection as in most cases these genes are
subsequently analyzed further, requiring much time and effort [16]. With such



Fig. 1. BN of the KDD Cup winner Fig. 2. Best MB output by IFSS

Fig. 3. Weighted accuracies of 61 runs
of IFSS.

Fig. 4. Frequencies of twenty most fre-
quent variables over 61 runs of IFSS.

Fig. 5. ROC curves of the best MB
output by IFSS on test set and on
the training set using 10-fold cross-
validation.

high-dimensional databases, all FSS algorithms are subject to some variability.
Surprisingly, the robustness of FSS techniques has received relatively little at-



tention so far in the literature. As noted in [2], robustness can be regarded from
different points of view: perturbation at the instance level (e.g. by removing or
adding samples), at the feature level (e.g. by adding noise to features), or varia-
tion of the parameter of the FSS algorithm, or a combination of them. Here, we
focus on the robustness of FSS selector as the variation of the output with re-
spect to a random permutation of the variables. We consider again the 61 times
runs of IFSS on THROMBIN data. A simple ensemble technique proposed in [2,
16] works by aggregating the feature rankings provided by the FSS selector into
a final consensus ranking weighted by frequency. The variables returned by IFSS
mostly differ by one or two variables. The top 20 ranked variables are shown
in Figure 4 in decreasing order of frequency in the output of IFSS. As we can
see, the variables 79651 and 10695 were always selected. These variables are also
present among the four features of the winner of the KDD cup in 2001, and
variable 79651 is always present in the top 10 MB output by KIAMB (see [6]).
The third most frequent feature, namely 91839, is also one of the four features
of the winner of the KDD cup.

Following [17], we take a similarity based approach where feature stability
is measured by comparing the 61 outputs of IFSS. We use the Jaccard index
as the similarity measure between two subsets S1 and S2. The more similar the
outputs, the higher the stability measure. The overall stability can be defined as
the average over all pairwise similarity comparisons between the n = 61 MBs:

Itot =

∑n
i=1

∑n
j=i+1 I(Si, Sj)

n(n− 1)
with I(Si, Sj) =

|Si

⋂
Sj |

|Si

⋃
Sj |

An average of 0.336 (with a standard deviation of 0.116) was obtained.

6 Conclusion

We discussed a new scalable feature subset selection procedure. This procedure
combines incrementally the outputs of non-scalable search-and-score Bayesian
network structure learning methods that are run on much smaller sets of vari-
ables. The method was shown to be highly efficient in terms of both running
time and accuracy. Future substantiation through more experiments with other
BN learning algorithms are currently being undertaken and comparisons with
other FSS techniques will be reported in due course.
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