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ABSTRACT

Hybrid evolutionary algorithms have been successfully ap-
plied to solve numerous multiobjective optimization prob-
lems (MOP). In this paper, a new hybrid evolutionary ap-
proach based on search strategy adaptation (HESSA) is pre-
sented. In HESSA, the search process is carried out through
adopting a pool of different search strategies, each of which
has a specified success ratio. A new offspring is generated
using a randomly selected strategy. Then, according to the
success of the generated offspring to update the population
or the archive, the success ratio of the selected strategy is
adapted. This provides the ability for HESSA to adopt
the appropriate search strategy according to the problem on
hand. Furthermore, the cooperation among different strate-
gies leads to improve the exploration and the exploitation of
the search space. The proposed pool is combined to a suit-
able evolutionary framework for supporting the integration
and cooperation. Moreover, the efficient solutions explored
over the search are collected in an external repository to
be used as global guides. The proposed HESSA is verified
against some of the state of the art MOEAs using a set of
test problems commonly used in the literature. The exper-
imental results indicate that HESSA is highly competitive
and can be considered as a viable alternative.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—global opti-
mization, simulated annealing.

; 1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—heuristic methods.

General Terms

Algorithms, Experimentation, Performance, Verification

Keywords

Multiobjective Optimization, Hybrid Evolutionary Algorithm,

Search Strategy adaptation.
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1. INTRODUCTION

Many of the real-world problems can be modeled as multi-
ple objective optimization problems (MOP), which are often
characterized by their large size and the presence of multi-
ple, conflicting objectives. In general, the basic task in mul-
tiple objective optimization is the identification of the set
of Pareto optimal solutions or even a good approximation
set to the Pareto Front (PF). Many of metaheuristics have
been introduced in the last thirty years [4] such as Evo-
lutionary Algorithms (EA), Evolutionary strategies (ES),
Simulated Annealing (SA),Tabu Search (TS), Scatter Search
(SS), Particle Swarm Optimization (PSO), Differential Evo-
lution (DE). More details are found in [2].

Multiobjective Evolutionary Algorithms (MOEAs) are a
very active and promising research area. They have re-
cently received increased interest because they offer prac-
tical advantages in facing difficult optimization problems.
Solving MOPs and their applications using evolutionary al-
gorithms have been investigated by many authors [7, 10, 13,
27, 28]. NSGAII [7] and SEPA2 [27] are the most popu-
lar Pareto dominance based MOEAs that have been domi-
nantly used. Based on many traditional mathematical pro-
gramming methods for approximating the PF [22], the ap-
proximation of the PF can be decomposed into a number of
single objective subproblems. Some of MOEAs adopt this
idea such as MOGLS [12], MOEA/D [25]. Many of search
algorithms attempt to obtain the best from a set of differ-
ent metaheuristics that perform together, complement each
other and augment their exploration capabilities. They are
commonly called Hybrid Metaheuristics (HM). Diversifica-
tion and intensification [2] are the two major issues when
designing a global search method. Diversification refers to
the ability to visit many different regions in the search space,
whereas intensification refers to the ability to obtain high
quality solutions within those regions. A search algorithm
must balance between sometimes-conflicting two goals. The
design of HM gives the ability to control this balance [20].

Motivated by the results achieved in [14, 15], this paper
tries to extend this work to the continuous search domains.
It studies the cooperation of different search operators and
analyze its effect on handling MOPs. It develops a hybrid
evolutionary approach (HESSA) which incorporates a pool
of adaptive search strategies within the MOEA/D frame-
work. The main goals are to capture the benefits of those
strategies with providing cooperation and integration. Also,
to make the approach capable of selecting the suitable search
strategy according to the problem on hand. The remainder
of this paper is organized as follows: section 2 presents some



of the basic concepts and definitions. In section 3, some of
the different search operators are overviewed. The proposed
HESSA is presented in section 4. In additions, the experi-
mental design and results are involved in sections 5 and 6
respectively. Finally, section 7 presents the conclusions and
some further directions.

2. BASIC CONCEPTS AND DEFINITIONS

Without loss of generality, the MOP can be written as:

Minimize F(x) = (fi(x), f2(x), -, fm(x)) (1)
Subjectto: x € Q

where F(z) is the m-dimensional objective vector, fi(z) is
the i*" objective to be minimized, z = (z1,--- ,z,)" is the
n-dimensional decision vector and €2 is the feasible decision
space.

Definition 1. A solution x dominates y (noted as: = < y)
if: fi(z) < fi(y), Vi € {1,---,m} and fi(z) < fi(y) for at
least one 7.

Definition 2. A solution z is said to e-dominate a solution
y for some € > 0 (noted as: z < y) if and only if: fi(z) <
(1+¢e)fi(y), Vie{l,--- ,m}.

Definition 3. A solution x is called efficient (Pareto-optimal)

if: #y € Q such that y < .

Definition 4. The Pareto optimal set (P*)is the set of all
efficient solutions:

P ={zeQ|fyeQ,y =z}

Definition 5. The Pareto front (PF') is the image of P* in
the objective space:

PF ={F(z) = (fi(z),  , fm(z)) : 2 € P}
Definition 6. Given a reference point r* and a weight vec-
tor A = [A1, -+, Am] such that Y7 A = 1, Ay > 0,V

the weighted sum (F*) and the weighted Tchebycheff (FT)
scalarizing functions corresponding to (1) can be defined as:

F“(z,A) = Z)\'sz(w) (2)
FTaz,Ar*) = Mazicicm {Ni(fi(z) =)} (3)

3. SEARCH OPERATORS

In this section, the components of the search strategies
used in this research will be reviewed as follows:

3.1 Genetic operators

Crossover and mutation are the two most popular genetic
operators. Crossover is the process of exchanging the genetic
material of the parents to create new offspring. Whereas,
the mutation operator is used to preserve the diversity of
the population during generations. In the literature, vari-
ous types of crossover and mutation were proposed. These
types are successfully used to handle different types of opti-
mization problems in the continuous search domains. In this
context, the SBX crossover [5], Multiple parents crossover [9]
and polynomial mutation [5] will be focused.
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3.1.1 SBX crossover

The simulated binary crossover (SBX) is widely used in
practice. It has been found to work well in many test prob-
lems that have a continuous search space. From a pair of
parents z* and z°, the SBX crossover produces an offspring
y as follows:

v={
5 (2u)t/ () u < 0.5
- (1/(2_2u))1/(1+nc) ,

where p,u € [0,1] are two uniform random numbers and 7.
is the distribution index.

(1+B)z*+(1-p)z") if: p<0.5

((1 - Bz + (1+ ﬁ)xb) otherwise (4)

[SIEESIES

()

otherwise

3.1.2  Multi-parents crossover

various multi-parents crossover were proposed in the liter-
ature for continuous search domains such as simplex (SPX)
[24], parents centric (PCX) [6], etc. However, the new mul-
tiple parents crossover (MPC) proposed in [9] will be used
here. According to equation (6), the MPC crossover con-
structs a new offspring y, from three different randomly se-
lected parents 2%, z® and ¢ as follows:

%+ B x (2" —2°) if: p< 3
"+ Bx(a*—a%) ifi L<p< 2
¢+ B x (2% — 2®)  otherwise

(6)

y:

where 8 ~ N(u,0) is a Gaussian random number and p €
[0,1] is a uniform random number.

3.1.3  Polynomial mutation

In polynomial mutation, the probability to produce a child
near to the parent is greater than the probability to produce
one distant it. The mutant offspring & can be produced as:
a’:j:{ zj + 65 x (b — aj) M)

Tj

e — (Quj)l/(Hnm) -1, u; <0.5
T 1= (2 = 2uy)YOFm) otherwise

with probability pm
with probability 1 — pm,

(8)

where u; € [0,1] is a random number. The distribution
index 7, and the mutation rate p,, are two control param-
eters. a; and b; are the lower and the upper limits of z;.

3.2 Differential Evolution operator

Differential evolution (DE) is a simple and efficient search
operator to solve optimization problems mainly in continu-
ous domains [3, 23]. DE’s success relies on the differential
mutation, that employs difference vectors built with pairs of
candidate solutions in the search domain. Each difference
vector is scaled and added to another candidate solution,
producing the so-called mutant vector. Then, DE recom-
bines the mutant vector with the parent solution to generate
a new offspring. The offspring replaces the parent only if it
has an equal or better fitness. There are different strate-
gies to carry out this process such as "DE/rand/n/bin”,
"DE/best/n/exp”, "DE/rand-to-best/n/bin”, etc, where n
is the number of difference vectors used [23]. In this work,
the "DE/rand/1/bin” strategy is considered. DE has some
control parameters as scaling factor F', that used to scale the
difference vectors, and crossover rate C'R. Given a popula-
tion P of N individuals, the idea is to randomly select three



distinct individuals 2%, 2° and ¢ from P for each target in-
dividual 2* € P, Vi € {1,--- , N}. The mutant individual v’
is produced according to (9). Then, the binomial crossover
is applied on v* and z° to produce a new offspring u’ as:

vl =2+ F x (2¥ — )
o — ’U; if rnd < CR, or j = jrnd,
77| %% otherwise,Vj=1,--- n.
where rnd € [0,1] and jrna € {1,--- ,n} is a random chosen
index to insure that at least one component of u' is con-
tributed by v*, n is the individual length and CR € [0, 1].

9)
(10)

3.3 Particle swarm optimization

PSO is a population-based stochastic optimization tech-
nique that simulates the social behavior of bird flocking and
fish schooling. It was originally proposed in [17]. PSO con-
sists of a population of particles (solutions). Each particle i
has its own position z* and moves through the search space
with an adaptable velocity v’ towards the best position that
it has achieved x;b and the overall best solution :c;b. For
each '™ particle at generation t, the velocity and the new
position for the next generation can be evaluated as follows:

v (1) = w - v (t)+err (zpp
2P (t+1) = 2°(t) + v (t+1)

— 2 (t))+cara (l‘gb — (1)) (11)
(12)

where w > 0 represents the inertia weight, ¢; and c2 are the
acceleration coefficients and r1, 72 ~ U(0,1)". For each j, If
x;(t 4 1) violates its domain [a;, bs], it will be repaired and
also its velocity v*(t + 1) will be reset as follows:
a; ifzi(t+1)<ay
by if 2i(t+1) > b,
vi(t+1) = =it +1)

zi(t+1) = (13)

where a; and b; are lower and upper bounds of the j** com-
ponent respectively. Here, the parameter v is set to 1.

3.4 Guided Mutation operator

Guided mutation proposed in [11] provides an integration
between global and local search capabilities, through guid-
ing the rotation of the evolutionary strategy (ES) mutation
ellipses, for global search, and using the regular ES opera-
tion to conduct local search to find the promising solution.
In guided mutation, the new solution y is generated from its
parent x using the guided target solution t as follows:

i — z; +0.5(t; —xj) xr+ R x N(0,1) with pp, (14)
J x; +0.5(t; —xj) xr with 1 — py,
1 — if 0.1 —
VR—{O X [t—=x| if0 x'\t x| >p (15)
o otherwise

where r ~ N(0,1) is a Gaussian number and p,, is the mu-
tation rate. The new offspring y consists of the current posi-
tion of its parent x, the guided vector derived from its target
t and the mutation step R which specified by the distance
|t — x| and bounded by the control parameter p.

4. THE PROPOSED HESSA

In this context, the proposed HESSA is presented in more
details. In the research work in [14, 16, 15], the influ-
ence of incorporating different cooperative metaheuristics
in MOEA/D framework was examined for discrete search
domains. The achieved results motivate us to extend the

633

Candidate Pool
Strategy, |[ Strategy, Strategy,
suc, suc, SUcy
calls | calls , calls
sucR, sucR, SucRy
D P Pk

Figure 1: The structure of the candidate pool.

idea to the continuous case. However, an adaptive multiple
search strategies are adopted for tackling continuous search
domains. In the following subsections, the components of
the proposed HESSA are discussed.

4.1 Multiple Search Strategies Adaptation

In this work, a pool of multiple search strategies is adopted
to generate the new offspring solutions instead of using a sin-
gle strategy as depicted by figure 1. To generate a new off-
spring, the candidate pool is accessed for selecting one search
strategy for each target individual in the current population.
During evolution, each certain number of consecutive pool’s
invokes is considered as a learning period (LP). The more
successfully one strategy behaved in the previous learning
period to generate promising solutions, the more probabil-
ity it will be chosen in the current learning period to be
used for generating the new offspring solutions. At each
learning period, the probability of selecting each strategy
from the candidate pool are summed to 1. These proba-
bilities are adapted gradually during the evolution process.
In the initial learning period, all strategies have the same
chance to be selected, i.e., each strategy k has a proba-
bility pr, = %, where K is the total number of strategies
in the candidate pool. During each learning period, each
strategy k£ can be chosen to generate the new solution ac-
cording to its probability pr using the stochastic universal
selection [1]. The number of selecting each strategy k is rep-
resented by callsi. Each strategy is considered to achieve a
success if it has the ability to generate an offspring capable
of updating the current population. The number of suc-
cessful calls for each strategy k is registered by suck. The
number of invokes for the candidate pool is expressed as:
callsior = Zlel Zle callsy,, where, L is the total number
of learning periods in the whole evolution. However, after
each learning period ! (when callsiot%LP = 0), the proba-
bility of selecting each strategy k for the next learning period
Di,i+1 will be adapted according to the following formulas:

sucR
Dhitl = =g = — (16)
25:1 sucRy,
et if call >0, Vk, 1
sucRu.i :{ callsy,; + e if ca S'k,l (17)
€ otherwise

where sucRy; is the success rate of the k'™ strategy at the
learning period [. The small constant value ¢ = 0.01 is used
to avoid the possible null success rates. Consequently, the
strategies with null success rate have a chance to be chosen
for generating offspring. Both sucy, and callsy, represent
the number of successful invokes and the total number of
invokes of the k™" strategy at the learning period .

4.2 The HESSA framework

Like MOEA/D [25], the proposed approach uses a de-
composition technique to convert the MOP in (1) into a



Table 1: Set of reproduction strategies used
Strategy description

SBXPM  The SBX crossover is applied on two parents followed
by polynomial mutation.

DEXPM The differential evolution is applied on three selected
parents followed by polynomial mutation.

MPCPM The multiple parent crossover is applied on three se-
lected parents followed by polynomial mutation.

GM Guided mutation is used to produce an offspring from
its parent and the global guide solution.

PSO Particle swarm computes a new position from the cur-

rent parent, its personal best and global guide.

set of single objective subproblems. The weighted Tcheby-
cheff approach described in (3) is used in this study. How-
ever, if we have a set of N evenly distributed weight vectors
{A', ..., AN}, correspondingly after decomposition, we have
N single objective subproblems. The proposed algorithm at-
tempts to simultaneously optimize these subproblems. Each
subproblem i has its own set of neighbors called B;, which
includes all the subproblems with the 7" closest weight vec-
tors {A* ..., A"} to A? in terms of Euclidean distance. The
structure of the proposed framework is briefed as follows:

e A population P of N individuals, P = {z',..., 2™},
where ' represents the current solution of the i*" sub-
problem. Each individual z* has its own velocity v,
its personal best position a:;b and its age a;.

A set of N evenly distributed weight vectors {AL,..., AN},
correspond to the N subproblems. Each A = [A1,..., Ap]
has m components correspond to m-objectives, such
that: > A\ =1, VXN € {0/H,1/H,--- ,H/H} and
N=clt vH e Z*.

A neighborhood B; for each subproblem i € {1,..., N},
which includes all subproblems with the 7' closest weight
vectors {A™, .- AT} to AL

A set of adaptive reproduction strategies contained in a
Pool for generating new solutions. Each strategy is se-
lected according to its probability as mentioned above.
Table (1) summarizes the set of adopted strategies.
An external archive to collect efficient solutions ex-
plored over the search process. The archive also plays
the role of global leaders repository.

After constructing the proposed framework, the proposed
approach implements two basic phases. The first one is the
initialization phase in which an initial population is ran-
domly generated, whereas the second is the main-loop in
which the search efforts are conducted to improve the initial
population. The whole process is summarized in Alg.(1).
Firstly, in lines (2-5), a set of N evenly distributed weight
vectors is initialized. Then, the neighborhood structure B; is
constructed for each subproblem ¢ by assigning all subprob-
lems with the T closest weight vectors to A;. The candidate
Pool is also built using the adopted reproduction strategies.
The archive and the evaluation counter are initialized. Sec-
ondly, the initial population is constructed in lines (6-12).
For each subproblem i, the current solution z‘ is randomly
initialized. Then, z* is evaluated and used to update the ref-
erence point 7* [25], the personal best x;b and the archive.
The velocity v* and the age a; are also initialized by 0. The
it" subproblem is appended to the population P. Now, the
main-loop is executed until achieving the maximum evalu-
ations Mewvals (lines 13-42). For each subproblem i, the
mating/updating range M; is chosen to be either the neigh-
borhood B; or the whole population. Then, three different
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parent solutions are randomly selected from M; for repro-
duction. The global leader mzb is randomly selected from the
archive. A reproduction strategy Sy is also selected from the
Pool for generating the new offspring y. According to the
selected strategy Sk, the offspring y is generated. In case
of using the guided mutation or the particle swarm, the age
parameter a; controls the generation process. In this case,
if a; exceeds the maximum allowable age Ty, a Gaussian
value as: N(%[zh, — z0,), [zhy, — z),|) is assigned to y. After
that, the offspring y is evaluated and used to update the
reference point r*. The current population P is updated
by invoking the UPDATESOLUTIONS module. The Archive is
also updated by y according to the crowding distance. The
evaluation counter is updated and checked. At the end of
each learning period, the Pool is adapted by calculating the
probability py for each strategy k according to (16). At the
end of the evolution, the archive is returned.

In the UPDATESOLUTIONS module explained in Alg. (2),
the offspring y updates the population P as follows: a ran-
dom index j is selected from the updating range M;. Then,
the current solution of the j** subproblem z’ is updated
only if y achieves better scalar fitness according to (3). In
this case, the success of the selected strategy Swuck is in-
creased. And the age a; is reset. Also, the personal best
x;b is updated by the same manner. Finally the selected
index j is eliminated from M;. If the current solution x; is
not updated, its age a; is increased. This process continues
until updating ¢ solution or M; becomes empty.

S. EXPERIMENTAL DESIGN

In this paper, HESSA is verified using some of the state
of the art MOEAs as: MOEA/D; [25], MOEA /D, [19] and
dMOPSO [21]. A set of standard test problems which cover
MOPs with different PFs’ characteristics as convexity, con-
cavity, disconnections and multifrontality is adopted. The
test problems contain bi-objectives test MOPs including Fon-
seca, Kursawe [4], ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6
proposed in [26]. They also contain three-objectives MOPs
such as DTLZ2, DTLZ4, DTLZ6 and DTLZ7 proposed in
[8]. Here, 30 decision variables are used for ZDT1, ZDT2
and ZDT3, whereas ZDT4 and ZDT6 are tested by 10 deci-
sion variables. In DTLZ2, DTLZ4 and DTLZ6, 12 decision
variables are used, whereas DTLZ7 is tested by 22 decision
variables. All experiments are performed on a PC with Intel
Core i5-2400 CPU, 3.1 GHz and 4 GB of RAM.

5.1 Parameter settings

For each algorithm, the population size N and the maxi-
mum evaluations Mevals are set to 100, 10000 for bi-objective
problems and 300, 30000 for three-objective test problems
respectively. The archive size and the learning period LP
are set to IV, 1000 respectively. In AMOPSO and HESSA,
the inertia weight w and coefficients ci, c2 used in PSO are
uniformly generated as U(0.1,0.5) for w and U(1.2,2) for ¢;
and cz as used in [21]. For HESSA, the guided mutation
parameter p is set to 0.03 and the mutation rate P, is set
to 1/n. In MPC crossover, 3 is set to N(0.7,0.1) as used in
[9]. The other common parameters are depicted in table 2.
Finally, the statistical analysis is applied on 30 independent
runs for each test MOP.



Algorithm 1 :HESSA(N,T,t,8,nc, Nm, CR, F,Ty)

Inputs:
N: Population size or no. of subproblems
T,t:  Min. neighborhood size, Max. replaced solutions
J: prob. of selecting parents from neighborhood
1: Begin:
2: Wy« {AY, - AN}, b initialize a set of N evenly distributed weight vectors
3: B; + [il, s 7iT]; Vi = 1,..., N > where Ail, ,.,,AiT are T closest to A
4: Pool <—CONSTRUCTPOOL(SBXPM,DEXPM,MPCPM,GM,PSO); D 5 strategies
5: Ewval < 0; Arch + @, D> initialize Bval 6 Empty archive
6: for i + 1 to N do: > Initialization phase
7: 1; — U(aj,bj),Vj =1,...,n. D get a uniform random zj € [aj,bj]
8: r* <—EVALUATE&UPDATE(;Ci); > evaluate = and update ref. point r*
9: m;b —ati vt 0;a; <0 > Initialize personal best,velocity & age
10: P «+AppSuBPRrOBLEM(z', A*,v*, 2}y, ai); B add ith subproblem
11: Arch +UPDATEARCHIVE(z"); Eval + +; D update Arch & Eval
12: end for
13: while (Eval < Mevals) do: > Main Loop
14: for i + 1 to N do: > determine the mating/updating rang M
15: M. {Bi if(rnd € [0,1] < 6)
: 1,..., N otherwise
16: 2%, 2%, 2¢  SELECTION(M;,); > Where: ot # 2@ # o0 # 2°
17: x;b + SELECTGLOBALBEST(A7ch); > randomly select Global guide
18: Sk «—SELECTSTRATEGY(Pool); > select a strategy S, from Pool
19: callsy, + callsy, + 1; > update # of calls for strategy Sp,
20: if (S = ”sBxpM”) then: > SBX crossover then Poly. mutation
21: y +CROSSOVER(z%, 2°);
22: y < POLYMUTATION(y);
23: else if (S; = "DEXPM”) then: b Diff. Evolution & Poly. mutation
24: y «DirrEvoLuTION(2%, 2%, 2°, 2, CR, F);
25: y +POLYMUTATION(y);
26: else if (S = "MPCPM”) then: > MP crossover & Poly. mutation
27: y +MPCRoOssovER(z®, 2°, 2%, 2}, );
28: y <POLYMUTATION(y);
29: else if (S, =7aM”) then: > Apply Guided Mutation or reset y
. GUIDEDMUTATION(z", @ yy,); ifia; < T
30: LA N(i[zt, —at,],|zt, —x!,]) otherwise
2 1%gb pbls gb pb
31: else if (S, = 7Ps0”) then: > Apply Particle Swarm or reset y
39 - PSO(w%,z;b,_azlgb,v‘l,ai); _ ifrta; < T,
Y N(i[zt, —2%,], |2t, —x,|) otherwise
2 1%gb pbls gb pb
33: end if > The End of Reproduction
34: r* <~ EVALUATE& UPDATE(Y); > evaluate y and update ref. point r*
35: P «+UPDATESOLUTIONS(y, t, My, P, Sk, 7*);
36: Arch + UP[)ATEARCHIVE(y7 Sk); D> crowding distance
37: callsior + +;Eval + +; D> update total calls € evaluations
38: if (callsiot%LP = 0) then: > The End of learning period
39: Pool +—ADAPTPOOL(P0ol); b recalculate py, for cach strategy k
40: end if > The End of Pool Adaptation
41: end for D> The End of Generation
42: end while
43: return Arch;
44: End

Algorithm 2 :UPDATESOLUTIONS(y, t, M;, P, Sk, r™)

Inputs:
y, t: the new solution, Max. replaced solutions
M;, P: the updating rang of subproblem i, the population
Sk,r*:  the selected reproduction strategy, reference. point
1: Begin: ¢ + 0;

2:

10:
11:
12:
13:
14:
15:

while (¢ < tand M; # @) do:
J <—SELECTRANDOMINDEX (M );
if (FTe(y,A9,r*) < FT¢(x?, AJ,r*)) then:
27—y et +;a; + 0;
sucy < suck + 1; > update # of success for strategy Sy,
if (FTe(x?, A, r*) < FTC(Iib, A7, r*)) then:
end if
M,; <REMOVEINDEX(M;, j);
else: aj +—a; +1;
end if
end while

return P;
End

> update Loop
> randomly select index j
D success case

D> update jyp, subproblem & reset age

> update the personal best

> exclude j from M;
D> update age a;

> return the updated population P
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Table 2: Set of common parameters
Parameters MOEAD; MOEADs; dMOPSO HESSA
Neighborhood size:T' 30 30 - 30
Max Replaced Sols:t - 2 - 2
Parents selection:d - 0.9 - 0.9
Crossover rate/index:pe, n¢ 1,20 - - 1,20
Mutation rate/index:p,,, nm 1/n,20  1/n,20 - 1/n,20
DE parameters:CR, F - 1,0.5 - 1,0.5
Age threshold:T, - - 2 2
PBI penalty value:6 - - 5 -

5.2 Assessment Metrics

Let A, B C R™ be two approximations to PF, P*,r* C
R™ be a reference set and a reference point respectively. The
following metrics can be expressed as:

1. The Set Coverage (I¢)[28] is used to compare two
approximation sets. The function Ic maps the ordered
pair (A, B) to the interval [0, 1] as:

Ic(A,B) = {ulu € B,3vjv € A : v u}|/|B] (18)
where Ic(A, B) is the percentage of the solutions in
B that are dominated by at least one solution from
A. Ic(B,A) is not necessarily equal to 1-Ic(A, B).
If Ic(A, B) is large and Ic(B, A) is small, then A is
better than B in a sense.

2. The Hypervolume (I)[28] for a set A is defined as:

In(A) = LUuea {ylu <y <} (19)

where £ is the Lebesgue measure of a set. Iy (A) de-
scribes the size of the objective space that is dominated
by A and dominates r*. We use the referenced indi-
cator such that: Irp(A) = Ig(P*) — Iu(A) and r* is
the nadir vector included in P*.

3. The Generational (I¢p) and Inverted Generational
Distance (Irgp) of a set A are defined as:

IGD(A7 P*) = ﬁ ZuGA{minUEP* d(”a ’U)}

IIGD(A7 P*) ‘pilq Zuep* {minvGAd(uv U)} (20)

where d(u,v) is the Euclidean distance between u, v
in R™. The Igp (A, P*) measures the average distance
from A to the nearest solution in P* that reflects the
closeness of A to P*. In contrast, the I;gp(A, P")
measures the average distance from P* to the nearest
solution in A that reflects the spread of A to a cer-
tain degree. The lower value of both Igp (A, P*) and
Irap(A, P*) means the better quality of A in terms of
convergence and diversity respectively.

4. The unary additive Epsilon (/) is defined as:

I (A P = infeem{Vz?' eP 3t eAd: 2t <y 22}
(21)
where z' < z2<:>1§j§m:z]1- Zz?-—e. it
gives the minimum e value by which each point in P*
can be decreased such that the resulting transformed
approximation set is weakly dominated by A.

Here, the True Pareto front for each test problem is used as
the reference set P*.
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Figure 2: ZDT4 Search Strategy Adaptation

6. EXPERIMENTAL RESULTS

Here, the different simulation results are shown in details.
Firstly, table 3 includes the results of the coverage Ic in-
dicator. It contains the median values of I¢ metric for the
compared algorithms for each test MOPs used in this study.
It is clear from the results that HESSA generally performs
better than the other algorithms in all test MOPs except
DTLZ2 and DTLZ4 with respect to MOEAD1, and slightly
have the same performance with AMOPSO in DTLZ6. The
results depicted by table 4 express the average and the stan-
dard deviation of the referenced hypervolume Iry indicator.
The results indicate that HESSA is able to achieve better
performance in all bi-objective test MOPs except Fonseca,
and have the second best performance in three-objective
problems except DTLZ4 in which it achieves the best perfor-
mance. In table 5, the average and the standard deviation of
the I¢p indicator are shown. It is clear that the results con-
firm the previous results of the Iry indicator in most test
problems. For DTLZ4, HESSA achieves the second best
performance after MOEAD;, whereas in DTLZ7, HESSA
achieves the best performance followed by MOEAD;. For
the I7¢p indicator, the results is shown in table 6. According
to these results, HESSA outperforms the other algorithms
in all bi-objective test problems except Fonseca. It has also
the second best performance in most three-objective test
problems except DTLZ4 in which HESSA achieves the best
performance. These results typically confirm the results of
the Iry indicator. Finally, table 7 shows the mean and
the standard deviation of the epsilon I.; indicator. These
results are nearly the same as those obtained by the pre-
vious indicators. HESSA achieves the best performance in
all test problems except Fonseca, DTLZ2 and DTLZ4, in
which MOEADs has the best performance. Generally from
the above results, HESSA achieves the best performance in
most cases or at least the second best performance.

Figure 2 depicts the adaptation of different search strate-
gies for ZDT4. Here, The run with the minimum I;¢p value
is selected. It is clear that all search strategies begin with
the same probability to be selected to launch the search pro-
cess. During the evolutions, the performance of each search
strategy is evaluated to adapt its probability of selection.
As steady state is reached, all strategies go to nearly the
same selection probability at the end of evolutions. This
reflects the ability of HESSA to control the search process
by launching the suitable search strategy at the appropriate
time.

Here, the scatter plots presented in figures 3 and 4 contain
the final Pareto fronts achieved by each algorithm for bi-
objectives and three-objectives test problems respectively.
The achieved final Pareto fronts is plotted versus the true
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Pareto front for each test problem. In these plots, The runs
that achieve the minimum I;gp values are considered.

Table 4: Results of Iry indicator (Average,o)

MOPs MOEAD; MOEAD, dMOPSO HESSA

Fonse 5.03e — 3¢.5¢—43.64€ — 34.3¢—5 1.19¢ — 21 4._34.08¢ — 31.1c—4
Kursa 2.94e — 11.8672 3.83e — 1347572 1.49¢ + 02.1(—;71 2.77e — 11.35_2
ZDT1 2.92e — 21‘5572 4.50e — 1&9@72 2.36e — 22”55_3 5.50e — 32,03_4
ZDT2 1.87e —1g.1e—2 3.33e — 1g.0e+0 1.23€¢ — 11.4c—1 5.48€ — 34.7¢ 4
ZDT3 2.28¢ — 25,302 6.22¢ — 1g.50_2 3.09¢ — 26.2¢_3 5.65€ — 32.00—4
ZDT4 1.05e — 17.5¢—2 6.66e — 11 1,—g 1.0le — 11.2¢—1 5.53€ — 34.3c—4
ZDT6 1.54e — 22.6(-;73 1.32¢ — 1&8572 8.76e — 33'5573 2.16e — 41.25_5

DTLZ24.61le — 21}39_3 4.84e — 211@73 1.21e — 16‘7,373 4.64e — 21.19__3
DTLZ4 1.40e — 11_32_1 2.05e — 23_05_2 5.81e — 21.2&—2 4.0le — 41_16_3
DTLZ6 1.11e — 26 9c—3 2.67€¢ — 47 6c—6 7-Tle — 41 6e—4 3.11le — 43 4c—6
DTLZ71.7le — 12.1e—2 5.36e — 11 2.1 1.67e — 13 ge—2 1.69e¢ — 15 2._3

Table 5: Results of I¢p indicator (Average,o)

MOPs MOEAD MOEAD- dMOPSO HESSA

Fonse 1.56e — 32_4574 9.96e — 43.3,3_5 4.49e — 35,1(:—4 1.14e — 35.8&—5
Kursa 8.56e — 31 2¢—3 1.09¢ — 21 gc—3 4.89¢ — 23 7.3 7.46€ — 36.6e—4a
ZDT1 5.15e — 31 4¢—3 3.67e — 1lg.7¢—2 1.29¢ — 21 g._38.30€e — 41 504
ZDT2 1.06e — 31.4¢—3 4.58¢ — 11 . 6e—1 1.35€¢ — 21.16—2 9.12e — 43 8¢ 4
ZDT3 5.83e — 35'5673 5.06e — 11(0571 8.87e¢ — 31.6&—3 2.70e — 31.65_4
ZDT4 7.15e — 2g8.1e—2 1.75e + 1g.4c+0 1.87e — 31.3c—3 8.38e — 42 4c—4
ZDT6 1.35¢ — 25 1¢-32.15e — 11 . 9c—1 5.45e — 39.0c—3 2.62¢ — 33.7¢—5
DTLZ2[5.85¢ — 31 .1e—4 7.85¢ — 32.4¢—4 6.85¢ — 25 0c—3 6.33€¢ — 31.7¢—4
DTLZ412.51e — 21.15_2 3.60e — 23,0&73 4.58e — 25,2673 3.51le — 21.4373
DTLZ6 4.19¢ — 22.8672 3.72e — 38.45_5 4.42¢e — 32,3574 3.85e — 36.8&75
DTLZ7 2.25e — 21‘76_3 1.69¢ — 17_4€_2 5.20e — 26.2&—3 2.19e — 24.0e—4

Table 6: Results of I;¢p indicator (Average,o)

MOPs MOEAD; MOEAD- dMOPSO HESSA

Fonse 4.21e — 34.5.—43.57e — 32.2¢—5 1.63¢ — 25 3._3 3.70e — 35.9¢c—5
Kursa 4.24e — 21'2373 4.42e — 21,2&73 1.06e — 12.1672 4.20e — 25.25_4
ZDT1 3.87e — 23.2672 3.90e — 196672 1.48e — 21‘5573 4.05e — 37.13_5

ZDT2
ZDT3

2.46e€ — 11 9¢—1 8.98¢ — 11.5¢—1 1.95¢ — 15 7.—1 4.00e — 31 2¢—4
2.67e — 22, 7¢—2 4.66e — 17 gc—2 1.75e — 25 4.3 1.06€ — 21 1o—4a
ZDT4 1.05e — 1lg.8e—2 6.48¢ 4 02.8¢+0 1.60e — 11 8.1 [4.11e — 31.3c—24
ZDT6 1.93e — 23.4673 1.63e¢ — 1242571 3.63e — 31.1673 1.89¢ — 31.65—5
DTLZ2 3.72e — 22.03_4 3.81le — 23(4674 7.33e — 24‘5573 3.73e — 22.3&74
DTLZ4 1.69¢ — 11_4(3_1 2.99¢ — 252&—3 4.41e — 26.5&—3 2.98e — 22'06_3
DTLZ6 3.82¢ — 22 ge—214.39€¢ — 33 2¢—5 7.72¢ — 37,24 4.52¢ — 31 5¢—5
DTLZ72.24e — 11 5¢—1 3.76e — 11 g._18.94e — 25 1.—2 1.15e — 13,53

Table 7: Results of /., indicator (Average,o)

MOPs MOEAD; MOEAD- dMOPSO HESSA

Fonse 9.09¢ — 02, 0e—0 6.47€¢ — 31 4e—4 7.45¢ — 23 3.2 7.07€¢ — 33.7¢—4
Kursa 8.79¢ — 21 6e—2 1.09¢ — 11 4¢—2 4.57e — 11.9c—1 8.24€ — 29.0e—3
ZDT1 1.10e — 17.0672 4.88¢ — 11(2571 2.88¢e — 23‘7573 8.25e — 34.15_4
ZDT2 7.21e — 12.ge—1 1.42¢ + 01.7¢—1 3.26€ — 14 4¢—1 7.44€ — 34 5¢—4
ZDT3 1.27e — 11.86—1 8.66e — 11_72_1 4.64e — 21_25_2 1.51e — 24,23_4
ZDT4 2.13¢ — 11.0e—1 6.80€ + 02,5040 2.53¢ — 12501 8.91€ — 35,404
ZDT6 2.85e — 24'9373 3.09e — 1244571 2.99e — 28.56—3 5.03e — 32.35_4
DTLZ2 8.76e — 24.2673 7.83e — 28.15_3 1.07e — 16,15—3 8.44e — 24.8673
DTLZ4 4.33¢ — 13.3.—1 8.24e — 25 7¢—2 1.38¢ — 11 .8c—26.39€¢ — 21 gc—2
DTLZ6 4.30e — 22_16_2 1.02e — 22.6&—4 1.47e — 21_96_3 1.04e — 21_56_4
DTLZ76.16e — 1g.3c—1 9.65¢ — 15.0c—1 2.49¢ — 15.1.—1 1.68e — 13 9c_3

7. CONCLUSIONS

In this paper, a hybrid evolutionary approach with search
strategy adaptation (HESSA) for handling multiobjective
continuous problems was presented. In HESSA, the search
process is controlled by adapting the search strategies used
during the evolution process. HESSA was verified using a
set of test MOPs commonly used in the literature. HESSA



Table 3: Results of the Coverage I. indicator (Median)

To (v, %) Fouseca | Kursawe | ZDT1 ZDT2 ZDT3 ZDT4 7ZDT6 | DTLZ2 | DTLZ4 | DTLZ6 | DTLZT
(MOEADT,HESSA)|[3.00e — 02[5.81¢ — 02]0.00¢ + 00|1.00e — 02[0.00¢ + 00|0.00e + 00]0.00e + 00|6.30¢ — 02|4.13¢ — 02]0.00¢ + 00|1.22¢ — 01
(HESSA,MOEAD1)|1.80¢ — 01[1.53¢ — 01]6.67¢ — 01|5.88¢ — 02]4.60e — 01]9.89¢ — 01[9.90¢ — 01]0.00¢ + 00/0.00¢ + 00[9.96¢ — 01[1.73¢ — 02
(MOEAD2,HESSA)|2.10e — 01]6.90¢ — 02]0.00€ + 00[0.00e + 00|0.00e + 00|0.00€ + 00]0.00€ + 00|8.37¢ — 03|8.26¢ — 03|2.05¢ — 03|0.00€ + 00
(HESSA,MOEAD2)|3.00e — 02|9.30e — 02|1.00¢ + 00[1.00e 4 00|9.83¢ — 01|1.00e + 00[6.72¢ — 01|1.28¢ — 01|1.58¢ — 01|4.24¢ — 03|9.06e — 01
(dMOPSO,HESSA) [0.00¢ + 00[0.00e + 00{0.00e + 00[0.00¢ + 000.00¢ + 00|1.00e¢ — 02]0.00¢ + 00]0.00¢ + 00|0.00e + 00]6.54¢ — 03|0.00¢ + 00
(HESSA,dMOPSO) [4.70e — 01[5.87¢ — 01[8.74¢ — 01|9.52¢ — 01]8.28¢ — 01]1.70e — 01[9.09¢ — 02|7.66¢ — 01|1.18¢ — 01]6.67¢ — 03]5.19¢ — 01
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Figure 3: The Pareto fronts achieved for bi-objectives test problems

was also compared with three state of the art MOEAs. A
set of quality indicators was also considered to evaluate the

performance for all the compared MOEAs.

The experi-

mental results indicate the superiority of HESSA over both
MOEA /D and dMOPSO on the most of test problems used.
They also indicate that HESSA has an average performance
highly competitive with respect to the compared MOEAs
based on the assessment indicators used in this study. The
contribution of HESSA is the combination among different
cooperative search operators that intensify the search pro-
cess to discover the promising regions in the search space and
enhance the ability to explore good quality solutions. The
second contribution is the ability to adapt the search pro-
cess by using the suitable search operator to the problem on
hand. In the future work, the tuning parameters of HESSA
will be investigated as well as its convergence analysis. Ad-
ditionally, HESSA will be extended to real applications and
to include decision makers’ preferences within the search.
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