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ABSTRACT

Handling Multiobjective Optimization Problems (MOOP) using
Hybrid Metaheuristics represents a promising and interest area of
research. In this paper, a Hybrid Evolutionary Metaheuristics
(HEMH) is presented. It combines different metaheuristics
integrated with each other to enhance the search capabilities. It
improves both of intensification and diversification toward the
preferred solutions and concentrates the search efforts to
investigate the promising regions in the search space. In the
proposed HEMH, the search process is divided into two phases. In
the first one, the DM-GRASP is applied to obtain an initial set of
high quality solutions dispersed along the Pareto front. Then, the
search efforts are intensified on the promising regions around
these solutions through the second phase. The greedy randomized
path-relinking with local search or reproduction operators are
applied to improve the quality and to guide the search to explore
the non discovered regions in the search space. The two phases
are combined with a suitable evolutionary framework supporting
the integration and cooperation. Moreover, the efficient solutions
explored over the search are collected in an external archive. The
HEMH is verified and tested against some of the state of the art
MOEAs using a set of MOKSP instances commonly used in the
literature. The experimental results indicate that the HEMH is
highly competitive and can be considered as a viable alternative.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control Methods
and Search — heuristic methods.

G.1.6 [Numerical Analysis]: optimization- constrained
optimization, global optimization, integer programming.

General Terms
Algorithms, Experimentation, Performance, Verification.

Keywords:
Data Mining, Evolutionary Algorithm, GRASP, Hybridization,
Metaheuristics, Multiobjective Optimization, Path-relinking.

1. INTRODUCTION

Many of the real-world problems can be modeled as
Multiobjective Combinatorial Optimization Problems (MOCOP),
which are often characterized by their large size and the presence
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of multiple, conflicting objectives. In general, the basic task in
multiobjective optimization is the identification of the set of
Pareto optimal solutions or even a good approximation set to the
Pareto Front (PF). Despite the progress in solving MOCOP
exactly, the large size often means that Metaheuristics (MH) are
required for their solution in reasonable time. Many of MHs have
been introduced in the last thirty years [7] such as Evolutionary
Algorithms (EA), Simulated Annealing (SA), Tabu Search (TS),
Scatter Search (SS), Path-Relinking, Iterated Local Search (ILS),
Guided Local Search (GLS), Particle Swarm Optimization (PSO)
and Greedy Randomized Adaptive Search Procedure
(GRASP)...etc. More details are found in [1].

Multiobjective Evolutionary Algorithms (MOEAs) are a very
active research area. They have recently received increase interest
because they offer practical advantages in facing difficult
optimization problems. Solving MOOPs and their applications
using evolutionary algorithms have been investigated by many
authors [3] [5] [10] [22] [24]. NSGAII [3] and SEPA2 [24] are the
most popular Pareto dominance based MOEAs that have been
dominantly used. Based on many traditional mathematical
programming methods for approximating the PF [14], the
approximation of the PF can be decomposed into a number of
single objective subproblems. Some of the MOEAs adopt this idea
such as MOGLS [11], MOEA/D [21]. Many of the search
algorithms attempt to obtain the best from a set of different MHs
that perform together, complement each other and augment their
exploration capabilities. They are commonly called Hybrid MH.
Diversification and intensification [1] are the two major issues
when designing a global search method. Diversification refers to
the ability to visit many and different regions in the search space,
while intensification refers to the ability to obtain high quality
solutions within those regions. A search algorithm must balance
between sometimes-conflicting two goals. The design of Hybrid
MH can give the ability to control this balance [13].

This paper tends to study the hybridization of different MHs and
analyze its effect on handling MOCOP. It develops a Hybrid
Evolutionary Metaheuristics (HEMH) which incorporates both of
DM-GRASP [18] and Path-relinking within the framework of the
MOEA/D. The main goals are to capture the benefits of those
techniques with providing cooperation, integration and adequate
balance between intensification and diversification to improve the
search capabilities. This can be achieved by applying Path-
relinking or reproduction operators on high quality solutions
obtained by DM-GRASP. The rest of the paper is organized as
follows: section 2 presents some of the basic concepts and
definitions. In section 3, an overview of GRASP and data mining
is highlighted. The path-relinking strategy is discussed in section
4. Section 5 reviews the MOEA/D framework. The proposed
HEMH is motivated and presented in section 6. In additions,
experimental design and experimental results are involved in



sections 7 and 8 respectively. Finally, section 9 presents the
conclusions and some directions for further research.

2. BASIC CONCEPTS AND DEFINITIONS
Without loss of generality, the MOOP can be formulated as:

Max F(x) = (fi(0), (), ., fin (X))
s.t.:x € Q.
Where, F(x) is the m-dimensional objective vector, f;(x) is the
ithobjective to be maximized, x = (xq,..,%,)7is the n-
dimensional decision vector and Q is the feasible decision space.
In case of QS Z, the MOOP is called multiobjective
combinatorial optimization problem (MOCOP).

Q)

Definition 1: A solution x dominatesy (noted as:x > y) if:
fi(x) = fily) Vi € {1, ..., m} and f;(x) > f;(y) for at least one i.
Definition 2: A solution x € Q is called efficient (Pareto-optimal)
ifAyeQ : y =x.

Definition 3: The Pareto optimal set (P*) is the set of all efficient
solutions: P* = {x € Q:Ay € Qand F(y) = F(x)}

Definition 4: The Pareto front (PF) is the image of the Pareto
optimal set P* in the objective space:

PF = {F(x) = (f1(x),f2(x), "'me(x)):x € P*}
Definition 5: Given a reference point r*and a weight vector
A=A, .., Ap] suchthat 4; = 0,vi € {1,..,m}, X2, 4; =1,
The weighted sum (FWS) and the weighted Tchebycheff (FT¢)
scalarizing functions corresponding to (1) are defined by (2) and
(3) respectively as:

Max F¥(x,A) = X1 4; fi(x) ()

FTeQe, 1%, 4) = Maxyciem{Ai (17 = £i(0))} ©)
Given a set of m knapsacks and a set of n items, the 0/1
Multiobjective Knapsack Problem (MOKSP) can be formulated as:

Max fi(x) = ¥j=q1cijx;, Vi € {1,...,m} 4)
s.t.: Z}Llwijx]- <Ww;,vie{l,.., m} )
x = (xq,...,x,)7 €{0,1}"
Where, ¢;; = 0is the profit of the j™ item in the i"knapsack,
w;; = 0 is the weight of the j™ item in the i*"knapsack and W is
the capacity of the i*"knapsack. When x; = 1, it means that the
jt" item is selected and put in all knapsacks.
The MOKSP is NP-hard and can model a variety of applications.
It was first formulated and solved by Zitzler & Thiele [22]. Since

then, it has become a standard benchmark that has been solved by
many other researchers [3] [21].

3. GRASP AND DATA MINING
3.1 GRASP Algorithm

GRASP [7] is a multi-start metaheuristics that has a two phase
iterative process. In the first phase, the construction is invoked to
build a completed solution. Then, the local search is applied on
this solution to guarantee to be locally optimal in the second
phase. This process is repeated until stopping criterion is met. The
best solution found is taken as a result.

3.1.1 Construction

Greedy randomized construction adds randomize to greedy
algorithm to produce a divers set of good quality starting solutions
from which to start local search. It takes initially a partial
solution S. Then, the greedy functiong is evaluated for each
unselected component inS. A restricted candidate list (RCL) is
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formed by the unselected components with g € [gpin, Fmin + @ X
(@max — Gmin)], Where a € [0,1] is a parameter to balance the
greediness and randomness inS. A component is selected
randomly from the RCL to be added to S. The whole process is
repeated until S is completed.

3.1.2 Local Search

Local search is applied to improve the starting solutions produced
by construction. Two basic strategies are often considered to
accept local search moves, first and best improvements. In the
first improvement, the first neighbor with better quality is
accepted as a new current solution. In contrast, the best
improvement examines all neighbors and accepts the best one as a
new current solution. More sophisticated local search methods
with good global search ability, such as simulated annealing and
tabu search, have also been suggested to improve the starting
solutions in GRASP [2].

3.2 DM-GRASP

In GRASP, iterations are performed independently from each
other. Consequently, the knowledge acquired in the past iterations
is not exploited in the subsequent iterations. The basic concept of
incorporating data mining in GRASP is that patterns found in the
high quality solutions obtained in earlier iterations can be used to
improve the search process, leading to a more -effective
exploration of the search space, and consequently, a cooperative
behavior is achieved instead of building each solution
independently. The resulting heuristic is the DM-GRASP [18] that
involves two phases [19]. The first one is to generate an elite set
D through executing pure GRASP for n iterations and selecting
the best solutions found. Then, data mining is applied on D to
extract the set of patterns P. Next, the hybrid phase is performed
in which a number of slightly different iterations are executed. In
these iterations, the construction receives a pattern p € P as a
partial solution from which a complete solution will be built.

4. PATH-RELINKING

Path-relinking was suggested to integrate intensification and
diversification strategies in the context of TS and SS [6]. It
generates new solutions by exploring trajectories that connect
high quality solutions. Starting from the starting solution (x%),
path-relinking generates a path in the neighborhood space that
leads toward the guiding solution (x*). This can be accomplished
through selecting moves that introduce attributes contained in x*
and incorporating them in an intermediate solution initially
originated inx®. It is observed that better solutions are found
when the relinking procedure starts from the best of x° and x°.
Because starting from the best gives the algorithm a better chance
to investigate in more detail the neighborhood of the most
promising solution [17]. Using path-relinking within GRASP as
an intensification strategy applied to each locally optimal solution,
was first proposed in [12]. It was followed by several extensions
and applications [15] [16]. In HEMH, greedy randomized path-
relinking [4] will be used as an intensification strategy to improve
the performance and enhance the efficiency.

5. MOEA/D FRAMEWORK

MOEA/D [21] is a recently developed MOEA in which the
decomposition idea is applied instead of dominance relation. The
MOEA/D framework can be explained as a cellular MOEA [9]
with a neighborhood structure in the m-dimensional weight space.
A single cell with a single individual is located at the same place



as each weight vector in the m-dimensional weight space. That is,
each cell has its own weight vector, which is used in the
scalarizing function for evaluating the individual in that cell.
Neighbors of a cell are defined by the Euclidean distance between
cells in the weight space. The efficient solutions obtained over the
search process are maintained in an external archive. To generate
an offspring for a cell, two parents are randomly selected from its
neighbors to apply reproduction. The offspring is compared with
the individual in the current cell using the scalarizing function. If
the offspring is better, it replaces the current individual. The
offspring is also compared with each neighbor. The scalarizing
function with the weight vector of each neighbor is used in the
comparison. All neighbors, which are inferior to the offspring, are
replaced with the offspring. This framework will be used by
HEMH to carry out the proposed hybridization with DM-GRASP
and greedy randomized path-relinking to enhance the performance
and improve the search capabilities.

6. THE (HEMH) FOR 0/1 MOKSP
6.1 Motivations

This work can be motivated as follows:

e Using data mining to extract good patterns that help to build
new solutions will achieve the cooperation among iterations.

e Applying reproduction on high quality solutions leads to
produce high quality offspring.

o Incorporating path-relinking will help in discovering solutions
beyond elite points as a post optimization strategy and will
increase the intensification in these regions.

o Path-relinking gives the ability of investigating the non-convex
regions and discovering the promising solutions lies on them.

6.2 The Proposed HEMH
Like MOEA/D [21], the HEMH needs a decomposition technique
to convert the MOKSP in (4) into a set of single objective
problems. The weighted sum approach described in (2) was used
because it worked better than weighted Tchebycheff described in
(3) on 0/1 MOKSP [8]. However, if we have a set of N uniformly
distributed weight vectors {A%, ..., AV}, correspondingly we
have N single-objective subproblems. HEMH attempts to
simultaneously optimize these N subproblems. The set of
neighbors of the i" subproblem includes all the subproblems with
the T closest weight vectors {A%,.., A7} to A’ in terms of
Euclidean distance. Each weight vector A = [A4, ..., 4] can be
generated according to (6). The number of different weight
vectors that can be generated is defined by (7).
mAi=1vA,€{0/H,1/H,.. H/H} Vi€ {l,..,m} (6)
N=(H;TI1),VHEZ+ )
The HEMH framework is discussed with illustrations for its
components and modules. Then, the whole procedure is explained.

6.2.1 HEMH framework

The HEMH framework contains two populations, main population
and Archive. The main population consists of N members in
which a solution is maintained for each search direction
(subproblem). Each subproblem has T of neighbors. The Archive
collects all efficient solutions explored over the search. It is
periodically updated by new explored solutions. The search
process consists of two basic phases, “initialization” and “Main
loop”. Initialization is responsible for obtaining an initial set of
high quality solutions dispersed into PF. Whereas, the main loop
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is responsible for discovering more new solutions in the most
promising regions through applying greedy randomized path-
relinking or reproduction on the set of high quality solutions
previously obtained. Figure 1 clarifies the whole process.

START

. g I:l Initial approximation ~
f2 f2 L fa 4]
Mining ™., o
Process ., U
True Pareto-Front ™, - <
Patterns SET Patterns SET ¢ E
|0 Tnitial Point. fi @ Initial Point fi RN

Apply GRASP on each Objective Pattern Mining DM-GRASP
1 rrrm

Dﬂ P a.o..o o
I '-o... Phase 2 ;
° # New Point: &
P ..x* New Points
New Points NN g =
The Final o <
Approximation Set . >
(Archive) THE MAIN LOOP .0 E
f g S
h Until stopping criterion, randomly S
select two Points x* and x’ to apply — ~
END .Path-Relinking or Reproduction Path-Relinking

Figure 1: HEMH flow diagram

6.2.1.1 Initialization phase

DM-GRASP is applied to generate an initial set of high quality
solutions to fill the main population. Firstly, original GRASP is
applied on each objective function separately to construct a set of
elite solutions from which a set of good patterns is extracted using
data mining. Then, for each subproblem, one of the extracted
patterns is selected as a partial solution to construct the current
solution. DM-GRASP consists of Construction, Local search and
Pattern-Mining modules. The procedures of both Construction and
Local search were explained in [20]. The Pattern-Mining module
receives as inputs the set of minimum supports o that represent the
minimum ratios of repetition of an item to be included in a pattern
and the set of elite solutions Archive. It simply extracts the set of
patterns P that achieve the minimum supports a from Archive.

6.2.1.2 Main loop phase

In this phase, greedy randomize path-relinking or reproduction is
applied on the solutions previously obtained in the initialization
phase to intensify the search process in the regions surrounding
the Pareto front. This means, concentrating the search efforts on
the promising regions to discover new high quality solutions.
Some of different modules used in this phase is explained.

6.2.1.2.1 Greedy Randomized Path Relinking

Greedy randomized path-relinking receives the inputs listed in
Algorithm 1. Firstly, the best of xSand x* is chosen to start with.
Then, the best fitness z* and the best solution x* are initialized.
The candidate lists CL and CL,, are constructed. Every
unmatched j between xSand x* with xjs = 0 is inserted into CL in
descending order according to the ratio in (8), whereas every
unmatched j between xSand xwith xjs = 1 is inserted into CLc
in increasing order according to (8).

Xt Aicij /X Wy 3
The RCL is composed of the first @ X|CL| elements of CL. The
procedure builds the path that connects x° with x‘gradually by

creating intermediate points through execution of the Relinking
loop. TInitially, the intermediate solutionx is set tox°. Then,



A(x, x*) the number of unmatched between x and x! is calculated.
The next move is carried out by selecting one of unmatched £*to
be matched, if the intermediate x is feasible, then, £*is randomly
extracted from RCL, otherwise the first element of CL.,,, is
extracted to be £*. The new intermediate x is obtained by flipping
the item (x,+) corresponding to the selected index £*in the current
intermediate x. If x is infeasible, the Greedy-Repair is invoked to
get the feasible solution y. Then, the best fitness z*and the best
solution x*are updated by y. This process is repeated until there is
only one unmatched item between the current intermediate x and
the guiding x*. Finally, Local search is invoked to improve x*only
if x* # x5. Then, x” is returned as an output.

sum function (2) using the weight vector A/, if y is better than x/,
then, x/ is replaced by y and deleted from Pop. This process is
repeated until ¢ iterations or Pop is empty.

Algorithm 2: Update-Solutions (y, t, Pop)

0l. c«0;

02. Repeat:

03. Randomly select an index j from Pop

04. If FWs(y,AV) = F*¥S(x/, A)) then:

05. x) « y; ¢ « ¢+ 1; /lupdate x/ by y and increment c.
06. Pop «Pop\{ j};

07. End-If

08. Until(c=torPop=0);

Algorithm 1: GRPathRelinking (x°,x¢, A, a, 8, Archive)
Inputs:

x5, x%: Starting & Guiding solutions.

A = [A4, ..., A, ]: Weighted vector of the current subproblem,

a € [0,1] < R: Controls greediness /randomness of move selection,
Output: x*: the best solution found in the path from x° to x*;

Begin:

01. IFF¥S(xt, A) > F¥S(x5, A) then: //swapping to start with the best
02. x x5 x5ext xtex;

03. End-If

04. x* x5 z° « FWS(x5,A);

05. CLe®; CLenye 0

06. While 3j : x7 # x/ A x} = 0 with Maxje{lmn)% do:
i=1"ij

07. CLe CLU {j};

08. End-While

09. While3j : x7 # x! A x§ = 1 with Min,-eh_m_n}% do:
i=1""ij

10. CLeomp < CLeomp U {j};

11. End-While

12.  RCL« The first & X |CL]| elements of CL. //Define RCL

13, x «x% Al xY) «{j €{1,..,n}: x; # x{}; /Ham. distance

14.  While (|A(x,x%)| > 1) do: //Relinking loop.

/linitialize x* and z*.

15. If x does not violate Equation (5) then:

16. Randomly pick ¢*from RCL.

17. CL—CL\ {¢;

18. Else:

19. £* < The first element in CL .

20. CLeomp —CLeomp\ £}

21. End-If

22. RCL«<The first a X |CL| elements of CL. //update RCL

23. x « Flip (x,€%); //flip € item in x.

24. If x violates Equation (5) then: y « GreedyRepair (x, A);
25. If (F¥*(y, A) > z*) then:

26. x*—y; z*— FYS(y, A); //update x* and z*

27. End-If

28. A(x,x%) « {j € {1,..,n} : x; # x{}; //update Ham. distance

29. End-While
30. If (x* # x°) then: x* «LocalSearch (x*, 8, A, Archive).
31. return x’;

6.2.2 The HEMH procedure
In algorithm 3, the proposed HEMH procedure which receives the
input parameters listed below is described.

6.2.1.2.2 Greedy Repair

In Greedy-Repair, the infeasible solution x is repaired to be
feasible. The main idea is to remove the items which have the
minimum values of the ratio in (8) from the infeasible solution
until becomes feasible. This ratio is calculated for each item in x
based on a specified weight vector A that taken as a parameter.

6.2.1.2.3 Update-Solutions

The Update-Solutions procedure presented in algorithm 2 takes
the solution y, t the number of solutions must be updated and Pop
the range from which solutions are selected to be updated. The
procedure starts with selecting a solution x/from Pop for
updating. Then, x/ is compared with y according the weighted

Algorithm 3: HEMH (Stopping criterion,N,Wy,T,t,8,a,B, 0, €)
Inputs:

N: Population Size or number of subproblems considered.

Wy, = {AY, ..., AN}: Set of N uniformly spread weight vectors.

T: Size of neighborhoods of each subproblem.

t < T: Maximum number of updated solutions.

6 € [0,1]: Probability of selecting parents from the neighborhoods

a € [0,1]: Parameter used at construction process.

B € [0,1]: Parameter used at the local search process.

o Set of Minimum support for pattern-mining

&: Minimum hamming distance allowed for applying path-relinking.
Output: Archive : all efficient solutions found over generations.
Begin: // initialization Phase
01. For i € {1, ..., N} do: /Define a set of T neighbors for each A’
02. Neighbors® « {i1, ...,iT} : A™, ..., ATare the T closest to A*
03.  End-For
04.  Let{A, .., A } € Wy be the set of all extreme weight vectors.
05. Archive « @;
06.  Fori € {1,...,m} do://Run GRASP for each objective separately
07. sol « @;

08. sol «Construction (sol, a, Ag, Archive);
09. sol «Local-Search (sol, §, As,, Archive);
10.  End-For

11. P «PattarnMining(o, Archive); //construct the set of patterns
12.  Fori € {1,...,N} do: /Initialize population using DM-GRASP

13. Randomly pick p from P //choose a pattern

14. x! «Construction (p, a, A', Archive); //Construct x‘using p.
15. xt «Local-Search (x!, B, A%, Archive); //Improve x".

16. FVi « F(x'); // Evaluation of x*

17. End-For

18.  While Stopping criterion is not satisfied do: /Main Loop Phase
19. For i € {1,2,...,N} do:

20. Randomly generate r € [0,1];

21. If (r < §) then: //Define Mating/updating rang

22. Pop < Neighbors?;

23. Else: Pop < {1,...,N};

24. End-If

25. Randomly pick j and k from Pop for recombination.

26. If(A(x/,x%) < &) then:

27. y « Reproduction (x/, x¥); // Crossover & mutation
28. y < GreedyRepair (v, A'); / Repair if infeasible
29. Else:

30. y « GRPathRelinking(x/, x¥, A}, a, B, Archive) ;
31. End-If

32. Update-Solutions (y, t, Pop); // Update Pop

33. Archive « Update-Archive (y, Archive);

34. End-For

35.  End-while
36. Return Archive;
End




The procedure starts with identifying the set of neighborhoods for
each subproblem i through calculating the Euclidian distance
between A‘and each one of the set of all weight vectors
{A%, ..., AN} and choosing the T closest subproblems. The initial
population members are initialized using DM-GRASP. Firstly,
GRASP is applied on each objective function separately collecting
elite solutions in the Archive. Then, pattern mining is applied on
the Archive to extract the set of patterns P. For each population
member, a pattern p € P is assigned as an input to the
construction procedure to build a complete solution in which the
Local search is applied on. The result is the i®" member in the
initial population. In the second phase, the search process is
intensified in the promising regions beyond the solutions
previously obtained through applying greedy randomized path-
relinking or even reproduction (crossover and mutation). For each
subproblem i, The Mating/Updating range (Pop) is determined to
be either its neighborhood (Local) with probability equals to §, or
the whole population (Global). To generate the new offspring y,
two parents x/ and x* are randomly selected from Pop. Then,
hamming distance A(x/, x¥) is calculated. The greedy randomize
path-relinking is applied to generatey only if A(x/,x*) > e.
Otherwise, reproduction is considered. If y is infeasible, the
Greedy-Repair module is invoked. Now, the offspring y must
update both of the solution of the i** subproblem and t solutions
from Pop. The Update-Solutions module is invoked to perform
this task. The Archive is updated by every generated offspring.
The whole process is repeated until stopping criterion is met.
Finally, the Archive is returned as an output.

7. EXPERIMENTAL DESIGN

The HEMH is verified to approve its efficiency and effectiveness.
The HEMH was implemented by C++. All experiments have been
performed on HP Z600 workstation with (2 CPUs) Intel® X5670
2.93 GHz and 16.0 GB of RAM.

7.1 Tested Algorithms & Instances

To verify the performance of HEMH, some of the state-of-the art
MOEAs are considered in this study such as NSGAII [3], SPEA2
[24], GRASPM [20] and MOEA/D [21]. The test instances listed
below in table 1 are commonly used in the literature [21]. These
instances are considered to perform the experimental design.

Table 1: Knapsack test instances

Instances HMEH
Name Knaps(m) Items(n) Vg N(H) MaxEvals
KSP252 2 250 150(149) 75(74) 75000
KSP502 2 500 200(199) 100(99) 100000
KSP752 2 750 250(249) 125(124) 125000
KSP253 3 250 300(23) 153(16) 150000
KSP503 3 500 300(23) 153(16) 150000
KSP753 3 750 300(23) 153(16) 150000
KSP254 4 250 364(11) 165(8) 182000
KSP504 4 500 364(11) 165(8) 182000
KSP754 4 750 364(11) 165(8) 182000

7.2 Parameter settings

Here, the different parameters used for each MOEA is discussed.
For MOEA/D, the parameter H which controls the number of
weigh vectors or the population size (N), is determined with its
corresponding (N) for each instance in table 1 above according to
the complexity. Thus, all of MOEA/D, NSGA-II and SPEA2 use
the same population size (N), whereas GRASPM uses (N) as the
number of weight vectors. in HEMH, a small population size is
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used to encourage path-relinking instead of reproduction. the
values of (H) and their corresponding values of (N) used in
HEMH for each instance is also listed in table 1. For NSGA-II,
SPEA2 and MOEA/D, The initial population is generated
randomly such that each member x=(x1, ..., x,)7 € {0,1}7, where
x;=1 with probability equals to 0.5. The maximum number of
evaluations (MaxEwvals) is used as stopping criterion for each
MOEA. In both HEMH and GRASPM in which the local search is
used, each fitness comparison performed inside the local search
procedure is considered as an evaluation for fair comparison. For
each compared MOEA, all efficient solutions observed over
generations were collected in Archive. In these experiments, the
same reproduction operator which combines the single-point
crossover and the standard mutation was considered. Crossover
was preformed with probability equals to 1, whereas mutation was
performed for each item independently with probability equals
to 1/n. In both NSGAII and SPEA2, tournament selection is used
with tournament size =2. The other control parameters are listed
in table 2. Finally, the statistical analysis is applied on 30
independent runs for each MOEA on each test instance.

Table 2: Parameter used in MOEAs

Parameters MOEAD GRASPM HEMH
Neighborhood in Mating: T 10 - 10
Max. no. of updated solutions: t - - 5
RCL definition ratio: a - 0.1 0.1
Reconstruction ratio: f§ - 0.5 0.5
Set of Minimum support: ¢ - - {1}
Parents selection : § - - 0.9
Minimal hamming distance: & - - 10

7.3 Assessment Metrics

Let A c R™and B € R™ be two approximations to the Pareto
front (PF), P* € R™be a set of uniformly distributed points
along PF (Reference Set) and r* € R™ be a reference point. The
following indicators can be expressed as follows:

A) The Set Coverage (C-metric) [22]:

This indicator is used to compare two approximation sets. The

function € maps the ordered pair (4, B) to the interval [0,1] as:
C(A,B) =l{ulueB, Fvlve A : v =u}|/|B| )

Where, C(A4, B) represents the percentage of the solutions in B
that are dominated by at least one solution from A. C(B, A4) is not
necessarily equal to 1 — C(4, B). In general, if C(4, B) is large
and C(B, A) is small, then A is better than B in a sense.

B) The Hypervolume (8-metric) [22]:
The Hypervolume of a set A4 is defined as:

8(A4,17) = AUyealyluzy =7} (10)
Where, £ is the Lebesgue measure of a set. This indicator

describes the size of the objective space that is dominated by
points of A and dominates r*. Here, r* is chosen as the origin.

C) Generational and Inverted Generational Distance:
The Generational Distance (GD) & Inverted Generational
Distance (IGD) of a set A are defined as:

. 1 .
GD(A,P*) = mzu ea{mingep- d(u, v)} (11)

. 1 .
IGD(A,P) = ﬁZu ep-{minge, d(u, v)} (12)
Where, d(u, v) is the Euclidean distance between u and v in R™.
The GD(A, P*) measures the average distance from A to the
nearest solution in P* that reflects the closeness of A to P*. In

contrast, the IGD (4, P*) measures the average distance from P* to
the nearest solution in A that reflects the spread of A to a certain



degree. The lower value of both GD(A,P*) and IGD(A,P*)
means the better quality of A in terms of convergence and
diversity respectively.

D) Maximum Spread (MS): [23]

This indicator evaluates the maximum extension covered by the
nondominated solutions in A as follows:

Al i 14l i 2
MS(A) = \/z;.n:l (max? ) = (minl2 £ (13)
Where, m is the number of objectives. One should note that the
higher value indicates the better performance.

In these experiments, the reference set P* is alternatively formed
for each problem instance by gathering all nondominated
solutions found by all of the compared MOEAs. Also, all
approximation sets are normalized in the range [0, 1].

8. EXPERIMENTAL RESULTS

Here, the different simulation results are shown in details. Firstly,
figure 2 shows the results of C-metric. It contains a chart (with
scale 0 at the bottom and 1 at the top) for each ordered pair of the
compared MOEAs. Each chart consists of nine box plots
representing the distribution of € values. Each box plot (from left
to right) represents an instance in table 1 (from top to down)
respectively. A chart located in the raw of algorithm A and the
column of algorithm B presents the values of coverage of
approximations generated by algorithm B by approximations
generated by algorithm A. It’s clear from the results in figure 2
that HEMH and GRASPM outperform the rest MOEAs. It’s also
clear that HEMH performs better or even slightly better than
GRASPM in all test instances.

]

.

HTIET

NSGA?2 ‘
éél:44’ 1 T

H

‘r**fx*%???'?%%% %
+¥ | GRASPM
“““““ R | | | PSPPI
*“"”“*“*“?”?"%%?%%%%%%%% “““““
++_ |l HEMH

Figure 2: Comparisons of C-Metric.
According to the results of .8-metric depicted by figure 3 and table
3 which contains the average values of the indicator achieved over
30 independent runs, it’s clear that the HEMH outperforms all the
compared MOEAs. Since, it has the maximum average 8-metric
values. This indicates the ability to improve both convergence and
diversity. Whereas, GRASPM and MOEAD have the second and
the third rank respectively in all test instances.

In table 4, the average values of the generational distance
indicator are listed. Additionally, figure 4 visualizes these results.
According to the generational distance results, the HEMH
outperforms all the compared MOEAs. The GRASPM algorithm

achieves the second rank followed by the MOEAD which takes
the third rank with respect to all test instances. This means that the
HEMH has the capabilities of discovering solutions as near as
possible to the Pareto front.

Table 3: The average hypervolume (8-metric)

Instance NSGAII SPEA2 MOEAD GRASPM HEMH
KSP252 6.680E-01 6.576E-01 7.763E-01 7.948E-01 7.976E-01
KSP502 5.889E-01 5.842E-01 7.492E-01 7.710E-01 7.757E-01
KSP752 5.516E-01 5.469E-01 7.540E-01 7.702E-01 7.751E-01
KSP253 4.129E-01 3.994E-01 5.342E-01 5.538E-01 5.580E-01
KSP503 3.175E-01 3.070E-01 4.982E-01 5.247E-01 5.308E-01
KSP753 2.665E-01 2.599E-01 4.861E-01 5.211E-01 5.270E-01
KSP254 2.122E-01 2.094E-01 3.334E-01 3.502E-01 3.553E-01
KSP504 1.325E-01 1.498E-01 2.922E-01 3.235E-01 3.306E-01
KSP754 9.766E-02 1.145E-01 2.666E-01 3.124E-01 3.216E-01

8.00E-01
6.00E-01
4.00E-01
2.00E-01
0.00E+00
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Figure 3: Comparisons of 8-Metric.

Table 4: The average generational distance (G D-metric)

502

Instance  NSGAII SPEA2 MOEAD GRASPM HEMH
KSP252 3.240E-03 3.142E-03 1.457E-03 4.020E-04 2.307E-04
KSP502 4.424E-03 4.555E-03 1.458E-03 3.500E-04 1.747E-04
KSP752 4.171E-03 4.993E-03 1.009E-03 2.889E-04 1.462E-04
KSP253 1.622E-03 1.377E-03  4.457E-04 1.771E-04 1.261E-04
KSP503 2.369E-03 1.984E-03  4.468E-04 1.312E-04 9.126E-05
KSP753 3.345E-03 2.912E-03  4.760E-04 1.041E-04 7.739E-05
KSP254 1.538E-03 1.042E-03 2.849E-04 1.516E-04 1.140E-04
KSP504 2.571E-03 1.576E-03 3.203E-04 9.534E-05 8.983E-05
KSP754 3.173E-03 2.017E-03  4.009E-04 8.047E-05 6.864E-05
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4.00E-03

3.00E-03
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Figure 4: Comparisons of GD-Metric

The results of the inverted generational distance comparisons are
listed in table 5 below, which contains the average values of the
IGD-indicator over 30 independent runs. Also, figure 5 visualizes
these results. It is clear that the HEMH outperforms all of the rest
MOEAs, which reflects its ability to obtain solutions with good
spread over the Pareto Frontier. The results also indicate that the
GRASPM achieves the second rank followed by the MOEAD
which take the third rank with respect to all test instances.

Table 6 and figure 6 below show the average values of the
maximum spread indictor for all test instances. Based on these
results, the HEMH has the superiority over other MOEAs,



followed by GRASPM. This assures their capabilities of exploring
the extreme regions in the search space due to the local search
used in both of them, which intensify the search on extremes.

Table 5: The average inverted generational distance

Instance  NSGAII SPEA2 MOEAD GRASPM HEMH
KSP252  7.899E-03  8.608E-03  8.094E-04  3.468E-04  3.161E-04
KSP502  8438E-03  83595E-03  8.236E-04  2.467E-04  1.717E-04
KSP752  8295E-03  8.126E-03  5.864E-04  2.055E-04  1.378E-04
KSP253 1.007E-03  1.153E-03  1.921E-04  9.910E-05  8.606E-05
KSP503 1.028E-03  1.143E-03  1.791E-04  9.015E-05  7.263E-05
KSP753 1.045E-03  1.124E-03  1.673E-04  8.099E-05  6.300E-05
KSP254  3.838E-04  4.127E-04  1.075E-04  8.232E-05  7.264E-05
KSP504  3.899E-04  3.968E-04 1.037E-04  7.686E-05  6.203E-05
KSP754  4.040E-04  4.081E-04  1.084E-04  7.057E-05 _ 5.611E-05

1.00E-02

8.00E-03

6.00E-03

4.00E-03

2.00E-03
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Figure 5: Comparisons of 1GD-Metric

Table 6: The average maximum spread metric

Instance  NSGAIL __SPEA2 _ MOEAD _GRASPM __ HEMH
KSP252  5.168E-01  4.705E-01  1373E+00  1.360E+00  1.374E+00
KSP502  3.788E-01  3.678E-01  1.309E+00  1371E+00  1.393E+00
KSP752  2598E-01  2.736E-01  1317E+00  1.354E+00  1.367E+00
KSP253  8916E-01  7.604E-01  1.650E+00  1.677E+00  1.702E+00
KSP503  6.653E-01  5.536E-01  1.653E+00  1.703E+00  1.708E+00
KSP753  4758E-01  3.851E-01  1.644E+00  1.713E+00  1.725E+00
KSP254  1234E+00  9.954E-01  1.903E+00  1.944E+00  1.981E+00
KSP504  1.066E+00  7.832E-01  1.902E+00  1.975E+00  1.985E+00
KSP754  8273E-01 _ 5.803E-01 _ 1.838E+00 __ 1.958E+00  1.960E+00
2.000E+00
1.500E+00
1.000E+00
5.000€-01
0.000E+00

Figure 6: Comparisons of MS-Metric

Figure 7 involves 3 subfigures in which the approximation sets
obtained by each MOEA are visualized for bi-objective instances
KSP252, KSP502 and KSP752. Each subfigure contains 2 scatter
graphs. The big one depicts the whole approximation sets whereas
the small one in the left bottom corner focused on the part
bounded by the small rectangle. In subfigure KSP252, HEMH and
GRASPM achieves nearly the same points. From subfigures
KSP502 and KSP752, it’s clear that the solutions obtained by
HEMH have the best quality. It is also noted from subfigures that

the quality of solutions obtained by HEMH is slightly increased
gradually as the size of instance increased. This can be explained
as, the larger the size of instance is, the more chance of hamming
distance between any two selected solutions to increase.
Consequently, path-relinking has more chance to be invoked
instead of reproduction. This reflects the role played by path-
relinking in improving the search capabilities of HEMH.
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Figure 7: The achieved approximation sets of KSP252,
KSP502 and KSP752 instances for each MOEA in 30 runs.

9. CONCLUSIONS

In this paper, a hybrid evolutionary metaheuristics (HEMH) based
on DM-GRASP and greedy randomize path-relinking to solve



multiobjective knapsack problems was presented. The proposed
HEMH was verified using a set of test instances commonly used
in the literature. The HEMH was compared with four of the most
popular MOEAs that considered as the state-of-the art. A set of
quality assessment indicators was also considered to evaluate the
performance for all the compared MOEAs. The experimental
results indicate the superiority of the decomposition based
MOEAs over the Pareto dominance based MOEAs. They also
indicate the superiority of local search based MOEAs especially
the HEMH. Since, it has an average performance highly
competitive with respect to the compared MOEAs based on the
assessment indicators used in the study. The main contribution of
our algorithm is the combination among different metaheuristics
techniques that intensify the search process in discovering the
most promising regions in the search space and enhance the
ability to explore good quality solutions. The second contribution
is the ability to find a good approximation set of high quality
solutions using a small set of uniformly distributed search
directions due to the use of path-relinking and local search
strategies. In the future work, the tuning parameters of the HEMH
will be investigated as well as its convergence analysis.
Additionally, the HEMH will be extended to handle other types of
combinatorial optimization problems.
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