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Laboratoire ERIC - Université Claude Bernard Lyon 1,
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Abstract—Hybrid Metaheuristics aim to incorporate and com-
bine different metaheuristics with each other to enhance the
search capabilities. It can improve both of intensification and
diversification toward the preferred solutions and concentrates
the search efforts to investigate the promising regions in the
search space. In this paper, a comparative study was developed
to study the effect of the hybridization of different metaheuris-
tics within MOEA/D framework. We study four proposals of
hybridization, the first proposal is to combine adaptive discrete
differential evolution operator with MOEA/D. The second one is
to combine the path-Relinking operator with MOEA/D. the third
and the fourth proposals combine both of them in MOEA/D. The
comparative study uses a set of MOKSP instances commonly used
in the literature to investigate the hybridization effects as well as
a set of quality assessment indicators. The experimental results
indicate that the proposals are highly competitive for most test
instances and can be considered as viable alternatives.

Index Terms—Multiobjective Optimization, Metaheuristics,
Evolutionary Algorithm, Differential Evolution, Path-relinking,
0/1 MOKSP.

I. INTRODUCTION

Many of real-world problems can be modeled as multiob-

jective combinatorial optimization problems (MOCOP), which

are often characterized by their large size and the presence of

multiple, conflicting objectives. In general, the basic task in

multiobjective optimization is the identification of the set of

Pareto optimal solutions or even a good approximation set to

the Pareto front (PF). Despite the progress in solving MOCOP

exactly, the large size often means that Metaheuristics (MH)

are required for their solution in reasonable time.

Multi-objective Evolutionary Algorithms (MOEAs) are a very

active research area. Solving MOOPs and their applications

using evolutionary algorithms have been investigated by many

authors [4], [7], [17], [18]. Pareto dominance based MOEAs

such as SPEA [17], NSGAII [3] and SPEA2 [18] have been

dominantly used in the recent studies. Based on many tradi-

tional mathematical programming methods for approximating

the PF [12], the approximation of the PF can be decomposed

into a number of single objective subproblems. Some of the

MOEAs adopt this idea such as MOGLS [8], MOEA/D [15].

Many of the search algorithms attempt to obtain the best from

a set of different metaheuristics that perform together, com-

plement each other and augment their exploration capabilities.

They are commonly called Hybrid MH. Diversification and

intensification [1] are the two major issues when designing

a global search method. A search algorithm must balance

between sometimes-conflicting two goals. The design of the

Hybrid MH can give the ability to control this balance [11].

This paper tends to study and analyze the effect of hy-

bridization of adaptive discrete differential evolution operator

and/or path-Relinking operator with the MOEA/D framework

in handling MOCOP. The competitive results achieved by

discrete DE in [16] motivated us to hybrid discrete DE within

MOEA/D framework. Moreover, path-relinking could improve

the search if it applied on high quality solutions [10]. This

work is partially related to our previous work in [10] in which

a new hybrid approach (HEMH) was developed. But here,

we only concentrate on studying the effect of incorporating

differential evolution and/or path-relinking in the MOEA/D.

The main goals are to determine the benefits and limitations

of those techniques by studying possible combinations and

their effects on the search capabilities. The rest of the paper

is organized as follows: section II presents some of the

basic concepts and definitions. In section III, the MOEA/D

framework was reviewed. In section IV, an overview on adap-

tive discrete differential evolution is highlighted. The path-

Relinking strategy is discussed in section V. The proposed

hybridization variants are presented in section VI. In addition,

the experimental design and results are involved in sections VII

and VIII respectively. Section IX presents some concluding

remarks. Finally, the conclusions and some directions for

further research are presented in section X.

II. BASIC CONCEPTS AND DEFINITIONS

Without loss of generality, MOOP can be formulated as:

MaximizeF (x) = (f1(x), f2(x), · · · , fm(x)) (1)

Subject to : x ∈ Ω
Where F (x) is the m-dimensional objective vector, fi(x) is

the ith objective to be maximized, x = (x1, · · · , xn)
T is

the n-dimensional decision vector, Ω is the feasible decision

space. In the case x ∈Z, the MOOP is called multiobjective
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combinatorial optimization problem (MOCOP).

Definition 1: A solution x dominates y ( noted as: x < y ) if:

fi(x) ≥ fi(y)∀i ∈ {1, · · · ,m} and fi(x) > fi(y) for at least

one i.
Definition 2: A solution x is called efficient (Pareto-optimal )

if: @ y ∈ Ω : y < x
Definition 3: The Pareto optimal set (P ∗) is the set of all

efficient solutions:

P ∗ = {x ∈ Ω : @ y ∈ Ω andF (y) ≥ F (x)}

Definition 4: The Pareto front (PF ) is the image of the Pareto

optimal set (P ∗) in the objective space:

PF = {F (x) = (f1(x), · · · , fm(x)) : x ∈ P ∗}

Definition 5: Given a reference point r∗ and a weight vector

Λ = [λ1, · · · , λm] such that λi ≥ 0, ∀i ∈ {1, . . . ,m} ,
the weighted sum (Fws) and the weighted Tchebycheff (FTc)

scalarizing functions corresponding to (1) are defined by (2)

and (3) respectively as:

MaximizeFws(x,Λ) =

m
∑

i=1

λifi(x) (2)

FTc(x, r∗,Λ) = Max1≤i≤m {λi(r
∗
i − fi(x))} (3)

Given a set of m knapsacks and a set of n items, the 0/1

multiobjective knapsack problem (MOKSP) can be formulated

as:

Maximize fi(x) =

n
∑

j=1

cijxj , ∀i ∈ {1, · · · ,m} (4)

Subject to :
n
∑

j=1

wijxj ≤ Wi, ∀i ∈ {1, · · · ,m} (5)

x = (x1, · · · , xn)
T ∈ {0, 1}

n

Where, cij ≥ 0 is the profit of the jth item in the ith

knapsack,wij ≥ 0 is the weight of the jth item in the ith

knapsack, and Wi is the capacity of the ith knapsack. When

xj=1, it means that the jth item is selected and put in all

knapsacks.

The MOKSP is NP-hard and can model a variety of applica-

tions. It was formulated and solved by Zitzler and Thiele [16].

Since then, it has become a standard benchmark that has been

solved by many other researchers [3], [8], [15].

III. MOEA/D FRAMEWORK

The MOEA/D [15] is a recently developed MOEA in

which the decomposition idea is applied instead of dominance

relation. The MOEA/D framework can be explained as a

cellular MOEA [6] with a neighborhood structure in the

m-dimensional weight space. A single cell with a single

individual is located at the same place as each weight vector

in the m-dimensional weight space. That is, each cell has its

own weight vector, which is used in the scalarizing function

for evaluating the individual in that cell. Neighbors of a cell are

defined by the Euclidean distance between cells in the weight

space. The efficient solutions obtained over the search process

are maintained in an external archive. To generate an offspring

for a cell, two parents are randomly selected from its neighbors

to apply reproduction. The offspring is compared with the

individual in the current cell using the scalarizing function.

If the offspring is better, the current individual is replaced

with the offspring. The offspring is also compared with each

neighbor using the scalarizing function with the weight vector

of that neighbor. All neighbors, which are inferior to the

offspring, are replaced with the offspring. MOEA/D requires

the following components:

• A population of N individuals
{

x1, · · · , xN
}

, where xi

is the current solution of the ith subproblem.

• A set of N weight vectors
{

Λ1, · · · ,ΛN
}

, correspond

to N single objective subproblems. Each weight vector

Λ = [λ1, · · · , λm] has m component correspond to the

m-objective problem, such that:
∑m

i=1 λi = 1,∀λi ∈
{0/H, 1/H, · · · , H/H}, ∀i ∈ {1, · · · ,m}, H ∈ Z+.

For each i ∈ {1, · · · , N}, a neighborhood B(i) of the ith

subproblem includes all the subproblems with the T closest

weight vectors
{

Λi1, · · · ,ΛiT
}

to Λi in terms of Euclidean

distance.

IV. ADAPTIVE DISCRETE DIFFERENTIAL EVOLUTION

Differential Evolution (DE) is a simple and efficient evolu-

tionary algorithm to solve optimization problems mainly in

continuous search domains [2], [13]. It can memorize the

best individuals and share the evolutionary information. It also

utilizes the competition and the cooperation of individuals in

population to guide the search process. DE has shown to be not

only very effective as a global optimizer in many application

domains, but also very robust in the sense of being able to

produce a small variance of the outcomes for a number of

independent runs [13].

The success of the DE algorithm relies on the differential mu-

tation operator. It employs difference vectors built with pairs

of candidate solutions in the search domain. The difference

vector are scaled and added to a third point, producing the

so-called mutant vector. In this paper, we propose to use the

differential mutation operator as an additional operator within

the MOEA/D framework. We choose the adaptive discrete

differential evolution strategy proposed in [16] to study its

effect on the MOEA/D exploration capabilities in the discrete

domains. This strategy is described in Alg. 1. Assume P is

a population of N individuals. The main idea is to select at

random three distinct individuals xr1, xr2, xr3 from P for

each target individual xi ∈ P, ∀i ∈ {1, · · · , N}. The mutant

individual vi is produced by applying the differential uniform

mutation on which called the parent base individual xr1 with

the rate pm. pm is calculated based on the parent differential

individuals (xr2, xr3) as follows:

pm = F · (HDist (xr2, xr3) /n) (6)

where HDist is the Hamming distance, n is the individual

length and F denotes the scaling factor. Then, crossover is

used to produce the new individual ui as follows:

uj
i =

{

vji if rnd(j) ≤ CR, or j = e,∀j = 1, · · · , n.

xj
i otherwise, ∀j = 1, · · · , n.

(7)

where rnd(j) ∈ [0, 1] is the jth random number generated

by random number generator, e is a component of a random

sequence S selected from {1, · · · , n} to insure that at least
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one component of ui is contributed by vi and CR ∈ [0, 1]
denotes the crossover factor. The mutation scaling factor F
and the crossover factor CR are adapted periodically to avoid

premature convergence as follows:

F = F0 · e
(−a1.(G/Gmax)) (8)

CR = CR0 · e
(−a2.(G/Gmax)) (9)

where G, Gmax are the current and the maximum evolutionary

generation respectively, F0, CR0 are the initial values of the

scaling factor and the crossover operator respectively. a1 and

a2 are plus constants. Finally, the new generated individual ui

is returned.

Algorithm 1 :DIFFEVOLUTION(x, y1, y2, y3, F0, CR0, a1, a2)
Inputs:
x& y1, y2, y3: current & 3 parent individuals

F0, CR0 ∈ [0, 1]: scaling factor and crossover rate

1: Begin:
2: F ← F0 · e(−a1.(G/Gmax));
3: CR← CR0 · e(−a2.(G/Gmax));
4: pm ← F · (HDist (y2, y3) /n);
5: v ← MUTATION(y1,pm); . Mutation

6: for all j ∈ {1, · · · , n} do . Crossover

7: if (rnd(j) ≤ CR ∨ j = e) then
8: uj ← vj ;
9: else

10: uj ← xj ;
11: end if

12: end for

13: return u;

V. PATH-RELINKING

Path-relinking was suggested to integrate intensification and

diversification strategies in the context of tabu search and

scattered search [5]. It generates new solutions by exploring

trajectories that connect high quality solutions. Starting from

the starting solution xs, path-relinking generates a path in

the neighborhood space that leads toward the guiding solution

xt. It selects moves that introduce attributes contained in xt,

and incorporating them in an intermediate solution initially

originated in xs. It is observed that better solutions are found

when the relinking procedure starts from the best of xs and xt.

Because starting from the best one gives the algorithm a better

chance to investigate in more detail the neighborhood of the

most promising solutions [14]. In this paper, path-relinking

will be used as an intensification strategy in the MOEA/D

framework, integrated with reproduction by crossover and mu-

tation. It will be invoked in the higher generations to guarantee

applying the relinking process on high quality solutions to

improve the performance and enhance the efficiency.

The proposed path-relinking procedure receives the inputs

listed in Alg. 2. Firstly, the best of xs and xt is chosen to

start with. Then, the best fitness z∗ and the best solution x∗ are

initialized. The candidate lists CL and CLcmp are constructed.

Every unmatched j between xs and xt with xs
j = 0 is inserted

into CL in descending order according to the ratio in (10).

whereas, every unmatched j between xs and xt with xs
j = 1

is inserted into CLcmp in increasing order according to (10).
m
∑

i=1

λi cij/

m
∑

i=1

wij (10)

The procedure builds the path that connects xs with xt

gradually by creating intermediate points through execution

of the relinking loop. Initially, the intermediate solution x is

set to xs. Then, the number of unmatched items between x
and xt (∆(x, xt)) is calculated. The next move is carried out

by selecting two of unmatched `1, `2 to be matched. If both

CL and CLcmp are not empty, then the first elements of CL
and CLcmp are extracted to be `1 and `2 respectively. Else if

one of them is empty, then, the first and second element of the

non empty one will be extracted to be `1 and `2 respectively.

The new intermediate x is obtained by flipping the two items

(x`1 , x`2) corresponding to the selected indexes `1 and `2 in

the current intermediate x. If x is infeasible, the Greedy-Repair

is invoked to get the feasible solution y. Then, z∗ and x∗ are

updated by y. This process is repeated until there is only one

unmatched item between the current intermediate x and the

guiding xt. Finally x∗ is returned.

Algorithm 2 :PATHRELINKING(xs, xt,Λ)
Inputs:
xs, xt: Starting & Guiding solutions

Λ = [λ1, · · · , λm]: weight vector of the current subproblem

1: Begin:

2: x∗ ←GETBESTOF(xs, xt);
3: z∗ ← Fws(x∗,Λ);CL,CLcmp ← φ;

4: while (∃j : xs
j 6= xt

j ∧ xs
j = 0 ∧Maxj∈{1,··· ,n}

∑m
i=1

λicij∑
m
i=1

wij
) do

5: CL← CL ∪ {j}
6: end while

7: while (∃j : xs
j 6= xt

j ∧ xs
j = 1 ∧Minj∈{1,··· ,n}

∑m
i=1

λicij∑
m
i=1

wij
) do

8: CLcmp ← CLcmp ∪ {j}
9: end while

10: x← xs;∆(x, xt)←
{

j : j ∈ {1, · · · , n} : xj 6= xt
j

}

11: while (|∆(x, xt)| ≥ 2) do . Relinking loop

12: if CL and CLcmp are not empty then
13: `1 ← EXTRACTFIRSTELEM(CL) . Extract the 1st element

14: `2 ← EXTRACTFIRSTELEM(CLcmp)
15: else if |CL| > 1 then
16: `1 ← EXTRACTFIRSTELEM(CL)
17: `2 ← EXTRACTFIRSTELEM(CL)
18: else

19: `1 ← EXTRACTFIRSTELEM(CLcmp)
20: `2 ← EXTRACTFIRSTELEM(CLcmp)
21: end if

22: x← FILPPBIT(`1, `2);y ←REPAIR(x,Λ)
23: if (Fws(y,Λ) > z∗) then

24: x∗ ← y; z∗ ← Fws(y,Λ);
25: end if

26: ∆(x, xt)←
{

j : j ∈ {1, · · · , n} : xj 6= xt
j

}

27: end while

28: return x∗;

VI. PROPOSED HYBRIDIZATION VARIANTS

In this work, we study the effect of using both of adap-

tive differential evolution operator proposed in [16] and/or

proposed path-relinking as a reproduction operator instead of

standard reproduction (crossover and mutation) in MOEA/D

framework. So we have four algorithm variants, the first

variant is called MOEADde in which the adaptive discrete dif-

ferential evolution completely replaces crossover and mutation

operators. The second variant is called MOEADpr in which the

proposed path-relinking operator is applied with the crossover
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and standard mutation after a certain number of evaluations

to guarantee the existence of high quality solutions. Pseudo

codes in Alg. 3 and Alg. 4 describe MOEADpr and MOEADde

respectively. In the third and the fourth variants, both of

differential evolution and path-relinking replaces crossover

and mutation, they are called MOEADdp1 and MOEADdp2

respectively. Fig.1 depicts these different variants.

Recombination Operators 

Crossover 

Mutation 

Path-

Relinking 

Adaptive 

DDE 

MOEAD Framework 

MOEA/D MOEADde MOEADpr MOEADdp 

Fig. 1. Hybridization variants

In Both MOEADde and MOEADpr, the set of uniform

weight vectors Λ is calculated, followed by construction of

the neighborhood structure. The initial population is also

generated (lines 2-5). Then the main loop is executed until

achieving the maximum evaluations (line 6). To generate a

new offspring for each subproblem i, the mating/updating

range (M ) is determined to be either the neighborhood of

the ith subproblem (Local), or the whole population (Global)

according to a certain probability (σ). This can give a better

chance for selecting distinct parents, which encourages the

path-relinking to be invoked in MOEADpr, or allows the

differential evolution to operate on distinct individuals in

MOEADde. Then, parent selection is performed. In case of

MOEADpr (Alg. 3), two parents xj and xk are randomly

selected from M . Then, the path-relinking operator is used

only if the hamming distance between the two selected parent

is greater than a certain value ε and the number of evaluations

Eval exceeds a certain ratio (γ) of the maximum evaluations

allowed to guarantee applying path-relinking on high quality

solutions. Else, the standard reproduction operator is applied

to generate the new offspring. In case of MOEADde variant

(Alg. 4), three distinct parent individuals are randomly selected

to apply adaptive discrete differential evolution on them. The

new generated offspring is evaluated, and used to update the

reference point z and also updating the population according

to the parameter t, which is used to limit the number of

replaced solutions. Finally, the efficient solution set in the final

population is returned as an output. In both MOEADdp1 and

MOEADdp2, some modifications are applied on MOEADde

(Alg. 4) to involve path-relinking after certain number of

evaluations that carried out to assure the existence of high

quality solutions. These modifications can be briefed as fol-

lows: when the number of evaluations Eval exceeds a certain

value (γ×MaxEvals) previously determined to involve path-

relinking, we have three selected parents xa, xb and xc in

the selection step (Alg. 4:line 9). If we randomly choose two

of them which have hamming distance greater than a certain

value (ε) to apply path-relinking on instead of differential

evolution, we will get the MOEADdp1 variant. On the other

hand, assuming the hamming distance conditions1 are satisfied,

if we apply path-relinking on the three selected parents(xa, xb

and xc) in the following manner: randomly choosing two

individuals (xa,xc) to apply path-relinking producing a new

individual y, then applying path-relinking on y and xb, we will

get MOEADdp2 variant. The pseudo code of both MOEADdp1

and MOEADdp2 can be obtained by replacing lines 10-11

in Alg. 4 by the pieces of code shown in Alg. 5 and 6

respectively.

Algorithm 3 :MOEADpr(N,T, t, δ, ε, γ)
Inputs:
N, T, t: Population size, Neighborhood size & No. of replaced solutions

δ ∈ [0, 1]: Prob. of selecting parents from neighborhood

ε, γ: Min. Hamming distance, Min. evaluations allowed for path-relink

1: Begin:

2: Λ←INITIALIZEWEIGHTVECTORS( );
3: B ←INITIALIZENEIGHBORHOOD( );
4: P ←INITIALIZEPOPULATION( );
5: z ←INITIALIZEREFPOINT( ); Eval← 0;
6: while (Eval < MaxEvals) do . main loop

7: for all (i ∈ {1, 2, · · · , N}) do

8: M ←

{

B(i) if(rnd ∈ [0, 1] < δ)

P otherwise

9: xj , xk ← SELECTION(M, i) . select 2 elements
10: if (HDist(x

j , xk) ≥ ε ∧ Eval ≥ γ ×MaxEvals) then

11: y ←PATHRELINKING(xj ,xk ,Λi);
12: else

13: u←REPRODUCTION(xj ,xk);
14: y ←REPAIR(u,Λi)
15: end if

16: EVALUATEFITNESS(y);
17: z ←UPDATEREFPOINT(y);
18: M ←UPDATESOLUTIONS(y, t);
19: Eval←UPDATE( );
20: end for

21: end while

22: return P ;

Algorithm 4 :MOEADde(N,T, t, δ, F0, CR0, a1, a2)
Inputs:
N, T, t: Population size, Neighborhood size & No. of replaced solutions

δ ∈ [0, 1]: Prob. of selecting parents from neighborhood

F0, CR0 ∈ [0, 1]: Scaling factor and Crossover rate

1: Begin:

2: Λ←INITIALIZEWEIGHTVECTORS( );
3: B ←INITIALIZENEIGHBORHOOD( );
4: P ←INITIALIZEPOPULATION( );
5: z ←INITIALIZEREFPOINT( ); Eval← 0;
6: while (Eval < MaxEvals) do . main loop

7: for all (i ∈ {1, 2, · · · , N}) do

8: M ←

{

B(i) if(rnd ∈ [0, 1] < δ)

P otherwise

9: xa, xb, xc ← SELECTION(M, i):xi 6= xa 6= xb 6= xc

10: u←DIFFEVOLUTION(xi, x
a, xb, xc, F0, CR0, a1, a2);

11: y ←REPAIR(u,Λi);
12: EVALUATEFITNESS(y);
13: z ←UPDATEREFPOINT(y);
14: M ←UPDATESOLUTIONS(y, t);
15: Eval←UPDATE( );
16: end for

17: end while

18: return P ;

1it means that xj and xk can be chosen for path-relinking only if:
HDist(x

j , xk) ≥ ε
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Algorithm 5 :MOEADdp1(N,T, t, δ, ε, γ, F0, CR0, a1, a2)

Replace lines (10-11) in Alg.4 by the following:

1: xj , xk ← RANDOMSELECTION(xa, xb, xc);
2: if (HDist(x

j , xk) ≥ ε ∧ Eval ≥ γ ×MaxEvals) then

3: y ←PATHRELINKING(xj ,xk ,Λi);
4: else

5: u←DIFFEVOLUTION(xi, x
a, xb, xc, F0, CR0, a1, a2);

6: y ←REPAIR(u,Λi);
7: end if

Algorithm 6 :MOEADdp2(N,T, t, δ, ε, γ, F0, CR0, a1, a2)

Replace lines(10-11) in Alg.4 by the following:

1: xa, xc ← RANDOMSELECTION(xa, xb, xc);
2: if (HDist(x

a, xc) ≥ ε ∧ Eval ≥ γ ×MaxEvals) then

3: y ←PATHRELINKING(xj , xk,Λi);
4: if (HDist(x

b, y) ≥ ε) then

5: y ←PATHRELINKING(y, xb,Λi);
6: end if

7: else

8: u←DIFFEVOLUTION(xi, x
a, xb, xc, F0, CR0, a1, a2);

9: y ←REPAIR(u,Λi);
10: end if

VII. EXPERIMENTAL DESIGN

In this paper, all experiments have been performed on DELL

PC with Intel Core i5-2400 CPU, 3.10 GHz and 4.0 GB of

RAM. The comparative study for different algorithm variant

was carried out on the set of test instances listed below in

Table I, which are commonly used in literature. SPEA2 [18]

algorithm is also used in this study.

TABLE I
SET OF KNAPSACK TEST INSTANCES

Instance m n SPEA2(N ) N(H) MaxEvals
KS252 2 250 150 150(149) 75000
KS502 2 500 200 200(199) 100000
KS752 2 750 250 250(249) 125000
KS253 3 250 200 300(23) 100000
KS503 3 500 250 300(23) 125000
KS753 3 750 300 300(23) 150000
KS254 4 250 250 364(11) 125000
KS504 4 500 300 364(11) 150000
KS754 4 750 350 364(11) 175000

A. Parameter settings

Here, the different parameters used for each algorithm

are discussed. The population size (N ) used in SPEA2 is

shown in Table I. For MOEA/D and its variants MOEADde,

MOEADpr, MOEADdp1 and MOEADdp2, the parameter H
which controls both the number of weight vectors and the

population size (N ) is determined for each instance in Table I

according to the complexity. The initial population used is ran-

domly generated such that each member x = (x1, · · · , xn)
T ∈

{0, 1}
T

, where xi = 1 with probability equal to 0.5. The

maximum number of evaluations (MaxEvals) is used as a

stopping criterion for each algorithm. For each algorithm,

all efficient solutions rest in the final iteration is used as

the final approximation set. In these experiments, single-point

crossover and standard mutation were considered. Mutation

was performed for each item independently with probability

(1/n). SPEA2 uses single point crossover with probability=1

and tournament selection with tournament size=2. The other

control parameters are listed in Table II. Finally, the statistical

analysis is applied on 30 independent runs for each test

instance.

TABLE II
SET OF COMMON PARAMETER USED

Parameters
MOEA/D

- -de -pr -dp
Neighborhood size: T 10 10 10 10
Max.no. of replaced solutions: t 2 2 2 2
Parents slection: δ - 0.9 0.9 0.9
Ratio to apply Path relink: γ - - 0.7 0.7
Minimal Hamming Distance: ε - - 10 10
Initial crossover Prob.: CR0 - 0.4 - 0.4
nitial scaling factor: F0 - 0.4 - 0.4
Plus constants: a1, a2 - 2, 2 - 2, 2

B. Assessment Metrics

Let A ⊂ <m and B ⊂ <m be two approximations to

the Pareto front (PF ), P ∗ ⊂ <m be a set of uniformly

distributed points along the PF (Reference Set) and r∗ ∈ <m

be a reference point. The following metrics can be expressed

as follows:

1) The Set Coverage (IC) [17]: This indicator is used to

compare two approximation sets. The function IC maps the

ordered pair (A,B) to the interval [0, 1] as:

IC(A,B) = |u|u ∈ B, ∃v|v ∈ A : v < u|/(|B|) (11)

where IC(A,B) represents the percentage of the solutions

in B that are dominated by at least one solution from A.

IC(B,A) is not necessarily equal to 1-IC(A,B). If IC(A,B)
is large and IC(B,A) is small, then A is better than B in a

sense.

2) The Hypervolume (IH ) [17]: The hypervolume for a set

A is defined as:

IH(A) = L(∪u∈A {y|u < y < r∗}) (12)

where L is the Lebesgue measure of a set. This indicator

describes the size of the objective space that is dominated

by points of A and dominates r∗. Here, we use the referenced

indicator such that: IRH(A) = IH(P ∗) − IH(A) and r∗ is

chosen as the origin.

3) Generational/Inverted Generational Distance: Genera-

tional Distance (IGD) and Inverted Generational Distance

(IIGD) of a set A are defined as:

IGD(A,P ∗) =
1

|A|

∑

u∈A

{minv∈P∗d(u, v)} (13)

IIGD(A,P ∗) =
1

|P ∗|

∑

u∈P∗

{minv∈Ad(u, v)} (14)

where d(u, v) is the Euclidean distance between u,v in <m.

The IGD(A,P ∗) measures the average distance from A to the

nearest solution in P ∗ that reflects the closeness of A to P ∗.

In contrast, the IIGD(A,P ∗) measures the average distance

from P ∗ to the nearest solution in A that reflects the spread

of A to a certain degree. The lower value of both IGD(A,P ∗)
and IIGD(A,P ∗) means the better quality of A in terms of

convergence and diversity respectively.
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4) R-indicator (IR3
) [9]: The IR3

metric uses a set of

utility functions u, which can be any scalar function. We use

both a weighted sum and weighted Tchebycheff function with

sufficiently large set of evenly distributed normalized weight

vectors Λ. IR3
can be evaluated as follows:

IR3
(A,P ∗) =

∑

λ∈Λ [u∗(λ, P ∗)− u∗(λ,A)] /u∗(λ, P ∗)

|Λ|
(15)

where u∗(λ,A)=maxz∈Au(λ, z), u(λ, z) = −(max1≤j≤mλj |z
∗
j −

zj |+ρ
∑m

j=1 |z
∗
j −zj |), ρ is a small positive integer, and for each

weight vector λ ∈ Λ, λ = [λ1, · · · , λm] such that λi ∈ [0, 1]
and

∑m
i=1 λi = 1.

In these experiments, the reference set P ∗ is alternatively

formed for each problem instance by gathering all nondomi-

nated solutions found by all of the compared algorithms in all

runs. Also, all approximation sets are normalized in the range

[1,2].

VIII. EXPERIMENTAL RESULTS

Here, the different simulation results are shown in details.

Firstly, Fig.2 depicts the results of IC metric. It contains a

chart (with scale 0 at the bottom and 1 at the top) for each

ordered pair of the compared algorithms. Each chart consists

of nine box plots representing the distribution of IC values.

Each box plot (from left to right) represents an instance in

Table I (from top to down), respectively. A chart located in the

raw of algorithm A and the column of algorithm B presents

the values of coverage of the approximations generated by

algorithm B by approximations generated by algorithm A. It

is clear from the results in Fig.2 that all four hybrid variants

outperform the original MOEA/D in most test instances. It is

also clear that MOEADpr has the best performance for all

bi-objective test instances.

The results of IRH listed in Table III contain the average of

IRH values achieved over 30 independent runs for each test

instance for each algorithm. Fig.3(a) visualizes the average

values. It is clear that all hybrid variants outperform the origi-

nal MOEA/D for all 3 and 4 objective test instances especially

Path-relinking based variants (MOEADpr, MOEADdp1 and

MOEADdp2), since they have the minimum average values.

We find also, MOEADpr has the best performance with

respect to most instances, while the differential evolution based

variants (MOEADde, MOEADdp1 and MOEADdp2) have poor

performance with respect to bi-objective instance compared

with the original MOEA/D.

TABLE III
RESULTS OF REFERENCED HYPERVOLUME (IRH )

Inst.
Algorithm

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KS252 4.45E-01 4.07E-02 1.48E-01 2.96E-02 1.41E-01 1.43E-01
KS502 6.51E-01 4.76E-02 1.72E-01 3.06E-02 1.68E-01 1.70E-01
KS752 7.32E-01 3.97E-02 1.19E-01 2.86E-02 1.13E-01 1.11E-01
KS253 1.58E+00 2.09E-01 1.80E-01 1.40E-01 1.64E-01 1.67E-01
KS503 2.11E+00 2.50E-01 2.12E-01 1.40E-01 1.86E-01 1.94E-01
KS753 2.41E+00 2.85E-01 2.80E-01 1.21E-01 2.62E-01 2.53E-01
KS254 4.00E+00 8.34E-01 6.49E-01 6.11E-01 6.10E-01 6.10E-01

KS504 5.05E+00 1.06E+00 6.55E-01 4.92E-01 5.66E-01 5.66E-01
KS754 5.76E+00 1.29E+00 7.50E-01 5.07E-01 6.09E-01 5.79E-01

In Table IV, the average values of the generational distance

IGD are listed. Additionally, Fig. 3(b) visualizes the average

values. According to IGD measure, it is clear that the pro-

posed hybrid variants outperform the original MOEA/D for

most instances since they have the minimum average values.

Also, MOEADpr outperforms with respect to bi-objective test

instances, while both MOEADdp1 and MOEADdp2 have the

superiority in the rest. In contrast, we find the differential

evolution based variants especially MOEADde achieve bad

results than the original MOEA/D in bi-objective instances.

TABLE IV
RESULTS OF GENERATIONAL DISTANCE (IGD )

Inst.
Algorithm

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KS252 2.79E-03 1.39E-03 2.25E-03 1.12E-03 2.22E-03 2.33E-03
KS502 3.98E-03 1.53E-03 2.34E-03 1.10E-03 2.18E-03 2.36E-03
KS752 4.62E-03 1.28E-03 1.38E-03 1.23E-03 1.27E-03 1.24E-03
KS253 3.71E-03 1.88E-03 7.39E-04 9.77E-04 6.55E-04 6.30E-04

KS503 4.06E-03 2.13E-03 7.12E-04 1.24E-03 5.93E-04 6.08E-04
KS753 4.18E-03 2.10E-03 8.06E-04 1.05E-03 6.55E-04 6.37E-04

KS254 5.17E-03 2.37E-03 9.84E-04 1.33E-03 8.76E-04 8.61E-04

KS504 6.34E-03 3.18E-03 9.58E-04 1.02E-03 5.98E-04 6.17E-04
KS754 6.75E-03 3.69E-03 9.73E-04 1.39E-03 6.08E-04 5.51E-04

The experimental results of the inverted generational dis-

tance (IIGD) are listed in Table V. Fig. 3(c) depicts

these results. These results are identical with IGD-metric,

where MOEADpr performs better in bi-objective and both

MOEADdp1 and MOEADdp2 perform better with respect to

many-objective.

The R-indicator IR3
illustrated in Table VI and depicted by

Fig. 3(d) confirms the results of the previous metrics. It indi-

cates that MOEADpr variant outperforms with respect to bi-

objective test instances. Where, MOEADdp1 and MOEADdp2

have the best performance with respect to the other instances.

TABLE V
RESULTS OF INVERTED GENERATIONAL DISTANCE(IIGD )

Inst.
Algorithm

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KS252 1.09E-02 1.00E-03 2.31E-03 8.37E-04 2.40E-03 2.25E-03
KS502 1.16E-02 9.72E-04 1.89E-03 7.05E-04 1.88E-03 1.89E-03
KS752 1.27E-02 7.96E-04 1.29E-03 7.04E-04 1.20E-03 1.16E-03
KS253 2.24E-03 6.11E-04 4.48E-04 4.99E-04 4.38E-04 4.35E-04

KS503 2.83E-03 6.12E-04 4.11E-04 4.82E-04 3.99E-04 4.01E-04
KS753 3.15E-03 5.93E-04 3.89E-04 4.27E-04 3.79E-04 3.70E-04

KS254 1.45E-03 6.80E-04 5.54E-04 6.07E-04 5.53E-04 5.49E-04

KS504 1.69E-03 6.51E-04 4.56E-04 4.82E-04 4.41E-04 4.37E-04

KS754 1.91E-03 6.88E-04 4.40E-04 4.81E-04 4.14E-04 4.07E-04

IX. CONCLUDING REMARKS

Regarding the above results on MOKSP test instances, we

can deduce the following remarks:

• MOEADpr variant achieves better results than the origi-

nal MOEA/D for all test instances in all used metrics.

• MOEADde variant outperforms the original MOEA/D

for test instance with 3 or 4 objective. Conversely, it
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Fig. 2. Results of IC indicator

TABLE VI
RESULTS OF R3 INDICATOR (IR3

)

Inst.
Algorithm

SPEA2 MOEAD MOEADde MOEADpr MOEADdp1 MOEADdp2

KS252 4.28E-02 5.27E-03 1.08E-02 3.85E-03 1.09E-02 1.12E-02
KS502 7.98E-02 6.66E-03 1.40E-02 4.64E-03 1.33E-02 1.40E-02
KS752 9.61E-02 6.46E-03 8.11E-03 5.64E-03 7.23E-03 7.16E-03
KS253 6.07E-02 1.09E-02 6.29E-03 6.65E-03 5.82E-03 5.79E-03

KS503 9.74E-02 1.32E-02 7.08E-03 7.26E-03 5.91E-03 6.27E-03
KS753 1.21E-01 1.45E-02 8.34E-03 6.52E-03 7.25E-03 7.06E-03
KS254 7.24E-02 1.55E-02 1.03E-02 1.11E-02 9.66E-03 9.63E-03

KS504 1.06E-01 2.05E-02 1.08E-02 9.09E-03 8.93E-03 9.00E-03
KS754 1.38E-01 2.54E-02 1.21E-02 1.02E-02 9.17E-03 8.81E-03

deteriorates the MOEA/D performance concerning bi-

objective instances.

• The performance of both MOEADdp1 and MOEADdp2

is highly affected by MOEADde performance. Since they

depend on differential evolution strategy more than path-

relinking.

In general, path-relinking operator has the ability to improve

the performance of the MOEA/D for all instances especially

with bi-objective instances. Whereas differential evolution

improves the MOEA/D performance in 3 and 4 objectives in-

stances. Consequently, the performance of their hybrid variants

MOEADdp1 and MOEADdp2 is enhanced.

X. CONCLUSION

In this paper, four different hybridization variants within

MOEA/D framework were presented. The first one is called

MOEADde which involves the adaptive discrete differential

evolution as a recombination operator within MOEA/D Frame-

work. The second is called MOEADpr, which uses the path-

relinking operator with the standard reproduction operators. In

the third and fourth variants both of differential evolution and

path-relinking are used. The four proposals were compared

with the original MOEA/D and SPEA2 using a set of MOKSP

instances commonly used in the literature. A set of quality

assessment indicators was also used to assess the performance.

The experimental results indicate the superiority of all pro-

posed hybrid variants over the original MOEA/D and SPEA2

for most test instances. In bi-objective test instances, we found

that MOEADpr has the superiority, while MOEADde has poor

performance. On the other hand, in case of instances with 3

or 4 objectives, the performance of the differential evolution

is improved. Consequently, all proposed variants achieve bet-

ter performance. They have an average performance highly
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Fig. 3. Average Results for all used indicators

competitive with respect to the original MOEA/D and SPEA2

based on the assessment indicators used in this study. The

general conclusion we have is: for bi-objective MOKSP test

instances, path-relinking operator has the first rank followed by

the standard crossover and mutation then differential evolution.

But in MOKSP test instances with 3 or 4 objectives, differen-

tial evolution and path-relinking perform better than standard

crossover and mutation. In the future work, these results will

be exploited to improve our previous work in [10]. We will

also study how to improve the performance of differential

evolution on discrete domains. Moreover, we can use other

metaheuristics to improve the performance of MOEA/D and

to handle other types of combinatorial optimization problems.
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