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Abstract—We propose a dynamic Bayesian network ap-
proach to forecast the short-term passenger flows of the urban
rail network of Paris. This approach can deal with the incom-
pleteness of the data caused by failures or lack of collection
systems. The structure of the model is based on the causal
relationships between the adjacent flows and is designed to
take into account the transport service. To reduce the number
of arcs and find the maximum likelihood estimate of the pa-
rameters, we perform the structural expectation-maximization
(EM) algorithm. Then short-term forecasting is conducted by
inference, using the bootstrap filter. An experiment is carried
out on an entire metro line, using ticket validation, count
and transport service data. Overall, the forecasting results
outperform historical average and last observation carried
forward (LOCF). They illustrate the potential of the approach,
as well as the key role of the transport service.

I. INTRODUCTION

RATP is the main public transport operator in the Paris
region. It operates all 16 metro lines, sections of 2 RER
(commuter rail) lines, 8 tramway lines and more than 350
bus lines. Currently, it uses several tools for passenger flow
modeling, whose purpose is to assess the long-term effects
of infrastructure or transport policy changes. However, these
models are not designed for short-term forecasting and
cannot take into account the impacts of unanticipated or
non-recurrent events (e.g., service disruptions, unplanned
closures of stations, crowd-attracting events). Furthermore,
the diversity of available data is still largely untapped. Each
service generally works with its own sources and thus only
has a partial view of the mobility within the network.

Given these observations, we propose an approach to
forecast the short-term passenger flows of the RATP urban
rail network (metro and RER). Based on dynamic Bayesian
networks, this approach is designed to harness the diversity
of data and to forecast in case of incomplete data. By provid-
ing real-time predictions, it can cater for various applications
in transport system management, such as operation planning,
passenger flow regulation and passenger information.

First, we detail the mobility data collected by RATP. After
a brief state of the art of short-term traffic forecasting, we
introduce Bayesian networks and their temporal extension.
Then we expose our modeling approach, which we apply to

an entire Paris metro line. After presenting the results, we
conclude the paper and discuss future work.

II. MOBILITY DATA

RATP collects extensive data on the passenger mobility,
which come from various sources: ticket validation, counts,
surveys, transport service, expert knowledge, modeling re-
sults, etc. In this work, we focus on ticket validation, count
and transport service data.

The RATP urban rail network can be divided into “public”
and “controlled” areas. The public areas are accessible to
all people, whereas the controlled areas require a valid
ticket. Ticket validation takes place when passengers enter
controlled areas from public or other controlled areas, and
when they leave RER controlled areas. After adjusting for
ticket evasion, it can be regarded as exhaustive counts.

Depending on the needs, count data can be collected
anywhere in the network, manually or using automatic
devices. Many counts are conducted to measure the number
of passengers traveling by train between successive stop
points. They are performed at train departures by specialized
agents or, for a few lines, by on-board weighing systems.

The transport service data provide the train departure and
arrival times at each stop point. These times are scheduled
by the public transport operator.

Due to failures of collection systems and to the fact
that these systems may be not used continuously, the data
collected are incomplete. This issue affects the choice of the
model, which must be able to forecast in any situation.

III. SHORT-TERM TRAFFIC FORECASTING

According to Van Lint and Van Hinsbergen [1], fore-
casting the short-term traffic can be reduced to solving the
following regression problem:

y(t) = G
(
x(k|k<t), e(k|k<t),Θ(t)

)
+ e(t) (1)

where G is the chosen model, y(t) is the vector of output
variables at time slice t, x(t) is the vector of input variables
at t (which can contain historical instances of y), Θ(t) is
the vector of adjustable parameters at t and e(t) is a noise
process that represents unobservable factors at t.



There is a vast literature on short-term traffic forecasting,
which can be classified into naïve, parametric and nonpara-
metric methods [2]. Because of their easy implementation,
naïve methods have been widely used, including historical
average [3] and last observation carried forward (LOCF),
also called random walk [4]. Among parametric methods,
a great focus has been given to ARIMA models since the
late 1970s [4], [5]. Kalman filter approaches have also
been successfully applied [6], [7]. In recent years, particular
attention has been afforded to nonparametric methods, such
as nonparametric regression [8], [9] and neural networks
[10], [11]. Their ability to better model nonlinear processes
has contributed to their popularity.

Most research in short-term traffic forecasting has focused
on vehicle flows in road networks. By contrast, little work
has been devoted to passenger flows in public transport net-
works, the existing models being mainly designed for long-
term planning practice [12]. Some authors have recently
begun to tackle this issue, especially through neural network
approaches [13]–[15].

Missing data is a common problem in many real-world
situations. Although various methods have been proposed for
traffic data imputation [16], [17], few of them are designed
to operate in a real-time setting [18]. Hence, most of the
models are not able to provide real-time predictions in case
of incomplete data. Bayesian network approaches have been
developed to address this problem, both on urban networks
[19] and on highways [20].

IV. BAYESIAN NETWORKS

A. Representation
Introduced by Pearl [21], Bayesian networks represent the

conditional dependencies (and independencies) between ran-
dom variables by a directed acyclic graph. These dependen-
cies are described by a joint probability distribution, which
decomposes into a product of local conditional distributions:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|Pa(Xi)) (2)

where Pa(Xi) is the set of parents of Xi.
The flexibility of Bayesian networks allows to combine

heterogeneous information sources. For example, an expert
can estimate a part of the model from data and another part
from his own knowledge [22]. Furthermore, the information
propagation mechanism makes inference possible in case of
incomplete data. This property is particularly useful in a
real-time setting, where the implementation of an additional
imputation process can be detrimental.

B. Linear Gaussian Bayesian Networks
When the variables are continuous, the local conditional

distributions of a Bayesian network can be described as
linear Gaussians [23]:

p(Xi|Pa(Xi)) = N
(
βi,0 + β>i Pa(Xi) , σ

2
i

)
(3)

where βi,0, βi and σ2
i are the parameters to be estimated

(for each i). The use of these distributions implies that the
relationships between the variables are linear.

C. Dynamic Bayesian Networks

Dynamic Bayesian networks extend Bayesian networks
to model the temporal relationships between variables [24].
Thus, they can represent systems that evolve over time.
Assuming that this evolution occurs between discrete time
slices, the joint distribution is expressed analogously to (2):

p
(
X(1), . . . , X(T )

)
=

T∏
t=1

n∏
i=1

p
(
X

(t)
i

∣∣∣Pa(X(t)
i

))
(4)

where X
(t)
i is the instantiation of Xi at time slice t and

X(t) =
{
X

(t)
1 , . . . , X

(t)
n

}
.

By extending the definition of Murphy [25] for first-order
dynamic Bayesian networks, an rth-order (r ≥ 1) dynamic
Bayesian network is defined as an (r + 1)-tuple of Bayesian
networks (B1, . . . ,Br,B→), where B1 defines p

(
X(1)

)
, Bt

defines p
(
X(t)

∣∣X(t−1), . . . , X(1)
)

for 2 ≤ t ≤ r and B→
defines p

(
X(t)

∣∣X(t−1), . . . , X(t−r)
)

for t > r.

V. MODELING APPROACH

A. Modeling Mechanism

Following Sun et al. [19], the most intuitive way to
build the model is to consider that the passenger flows at
given points have causal relationships with the flows located
downstream in the transport network. Thus, we define a
parameter d such that each flow at time slice t depends
on its adjacent upstream flows at t − 1, . . . , t − d. As the
historical values of the flows provide information on their
trend, we also define a parameter m such that each flow at t
depends on its values at t−1, . . . , t−m [19]. The resulting
dynamic Bayesian network is of order r = max (d,m).

In a public transport network, the passenger flows are
closely related to the transport service. Intuitively, the num-
ber of passengers on a train depends on the waiting time
between this train and the previous one. Indeed, the longer
this waiting time, the more passengers crowd the platform
before boarding.

Let X be a flow of passengers traveling by train between
two successive stop points and D(t)

X the set of departure
times from the stop point of origin of X during time slice
t (several departures can take place during the same time
slice). We define the “transport service variable” associated
with X at t:

S
(t)
X =

maxD(t)
X −max

⋃
k|k<t

D(k)
X , if D(t)

X 6= ∅

0, otherwise
(5)

where maxD(t)
X and max

⋃
k|k<t

D(k)
X are the latest departure

times during and before t respectively. S(t)
X can be regarded
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Figure 1. (a) Example of urban rail passenger flows. (b) Corresponding dynamic Bayesian network with d = 1 and m = 2, unrolled over 3 time slices.

as the total period during which passengers wait for the
trains departing during t. In the dynamic Bayesian network,
it directly influences X(t). As for passenger flows, it depends
on its adjacent upstream transport service variables and on
its values at the previous time slices.

All variables in the model are continuous. Assuming
that their relationships are linear, we describe the local
conditional distributions as linear Gaussians.

Fig. 1 provides an example of passenger flows and their
corresponding dynamic Bayesian network with d = 1 (solid
arcs in Fig. 1b) and m = 2 (dashed arcs). In this example, A
is upstream of D and C is upstream of B and D. C and D
are directly influenced by the transport service (dotted arcs).

B. Parameter Estimation

Given a training dataset, the parameters of a linear
Gaussian Bayesian network can be estimated by maximum
likelihood. However, the traditional estimation method is
unable to provide analytical solutions in the presence of
incomplete data. Moreover, if the missing data are widely
scattered, listwise deletion may result to an excessive loss
of information. The approach of Sun et al. [19] consists in
replacing the variables whose values are missing by their
parents in the dynamic Bayesian network. However, this
method is also difficult to apply, because it implies that the
parents are complete, which is not true in many cases.

Proposed by Dempster et al. [26], the expectation-
maximization (EM) algorithm is an iterative method for
finding the maximum likelihood estimate of the parameters
when the dataset has missing (or hidden) values. Starting
from an initial guess of the parameters, the EM algorithm
performs, at each iteration k, the following two steps [27]:

• the expectation (E) step, where it calculates the ex-
pected value of the complete-data log-likelihood, with
respect to the missing data Xm given the observed data
Xo and the current estimate of the parameters Θ(k−1):

Q
(

Θ
∣∣∣Θ(k−1)

)
= E

[
log p(Xo,Xm|Θ)

∣∣∣Xo,Θ
(k−1)

]
;

(6)
• the maximization (M) step, where it estimates the

parameters that maximize this expectation:

Θ(k) = arg max
Θ

Q
(

Θ
∣∣∣Θ(k−1)

)
. (7)

As proved by Dempster et al. [26], each iteration is guar-
anteed to increase the log-likelihood until convergence to a
local maximum.

C. Dimension Reduction

Depending on d and m, the number of arcs in the dynamic
Bayesian network can be huge. In addition to increasing
the computational complexity, this situation can lead to
overfitting and decrease the forecasting performance. In
order to avoid these problems, we need to select the best
subset of arcs among those described in subsection V-A.

Proposed by Friedman [28], [29], the structural EM al-
gorithm works similarly to the parametric version. Using
the Bayesian information criterion (BIC) [30] as scoring
function, it performs, at each iteration k, the following two
steps:
• the E step, where it calculates the expected value of

the BIC score, with respect to the missing data given
the observed data and the current estimate of the model
(i.e., the structure and the parameters) B(k−1):

QBIC

(
B
∣∣∣B(k−1)

)
=

E
[
log p(Xo,Xm|B)

∣∣∣Xo,B(k−1)
]
− logN

2
#B (8)

where N is the number of observations in the dataset
and #B is the number of free parameters in B;

• the M step, where it estimates the model that maximizes
this expectation:

B(k) = arg max
B

QBIC

(
B
∣∣∣B(k−1)

)
. (9)

As for the EM algorithm, each iteration increases the BIC
score until convergence to a local maximum [28].

In practice, an iteration of the structural EM algorithm
consists in performing the EM algorithm to complete the
data (E step) and then using the completed dataset to
update the model (M step). When the data are complete,



the decomposition of the log-likelihood into a sum of local
terms allows to maximize the BIC score within each family
independantly [28]. This property facilitates the computation
and can be exploited by a greedy hill climbing procedure to
gradually improve the structure [31].

In their paper, Friedman et al. [32] extend the structural
EM algorithm to dynamic Bayesian networks. Because of
the decomposition property of the BIC score, each of the
r+1 structures that compose an rth-order dynamic Bayesian
network can be improved independantly.

D. Short-Term Forecasting

The short-term forecasting process is an inference prob-
lem in the dynamic Bayesian network. However, the exact
inference methods are generally too time-consuming for
large models. In order to ensure real-time forecasting, it is
necessary to fall back on approximate methods.

The bootstrap filter [33], also known as “survival of the
fittest” [34], is a stochastic simulation algorithm that effi-
ciently performs approximate inference in dynamic Bayesian
networks. It generates weighted sample sequences by sam-
pling the unobserved values and propagates them forward in
time. At each time slice t, the algorithm randomly selects a
set of sequences proportionally to their current weight. Each
selected sequence is then used to generate a new sample
for time slice t + 1 (prediction step). Upon receiving the
measures at t+ 1, the weight is updated to the likelihood of
the evidence given the sequence, and so on.

Although the boostrap filter is often applied to first-order
models [33], [34], it can be extended to high-order models
(r > 1), as shown by Pan and Schonfeld [35].

VI. EXPERIMENT

A. Input Data

We apply the dynamic Bayesian network approach to
the stations served by Paris metro line 2. More precisely,
we focus on the flows of passengers entering, leaving and
moving through these stations, on foot or by train, including
those related to the connected metro and RER lines. In this
experiment, we collect three types of data:
• ticket validation data, when passengers enter controlled

areas from public areas (28 flows) or leave controlled
areas to public or other controlled areas (7 flows);

• automatic count data, at train departures by on-board
weighing systems (60 flows);

• transport service data (114 transport service variables).
Due to failures of collection systems and to the fact

that some trains are not equipped with weighing systems,
80 of the 95 flows recorded are incomplete. Overall, their
missing data rate is 4.8%, but it reaches more than 50%
for some flows (by contrast, this rate is only 0.2% for the
transport service variables). The missing data also have a
high temporal dispersion, covering 99.7% of the time slices.

B. Experimental Method

We divide the dataset into training and test sets, which
include the data of the first 24 days and the last 9 days re-
spectively. The structure and the parameters of the dynamic
Bayesian network are learned from the training set, using the
structural EM algorithm described in subsection V-C. Then
short-term forecasting is performed on the test set, using the
bootstrap filter described in subsection V-D.

Since the transport service is scheduled by the public
transport operator, we assume that the actual values of the
transport service variables at time slice t are already known
at t − 1 and do not need to be predicted. This assumption
may seem optimistic as unexpected changes can occur at
the last moment. To be more realistic, we should preset the
transport service variables at t to their values “expected” at
t− 1. However, this information is not stored and therefore
cannot be exploited in this experiment.

To evaluate the forecast accuracy of the model, we adopt
the weighted mean absolute percentage error (WMAPE):

WMAPE (x, x̂) =

∑N
t=1

∣∣x(t) − x̂(t)
∣∣∑N

t=1 x
(t)

(10)

where x̂ is the estimate of x. Like the mean absolute per-
centage error (MAPE), the WMAPE is easily interpretable.
On the other hand, it weights the errors by the values of
x and thereby favors models that are effective in predicting
the high values of the flows.

In this experiment, we take the parameters d = 2 and
m = 3, which empirically provide good forecasting results.
In order to assess the individual contribution of each type
of relationships, two partial versions of the model are tested
in addition to the complete one: a version without transport
service and a version without relationships between adjacent
flows. The results are also compared to those of two naïve
methods: historical average, which forecasts the flows by
averaging their historical values at the corresponding time
slices [3], and LOCF, which simply uses their last observed
value [4].

C. Forecasting Results

The results of the experiment are listed in Table I. Accord-
ing to their location in the application area, the passenger
flows are classified into three categories. For each of them,
the results are expressed by the average WMAPE of the
related flows.

Overall, the dynamic Bayesian network approach out-
performs the two naïve methods, with average WMAPEs
of 18.5% versus 32.1% for historical average and 49.6%
for LOCF. The flows measured at train departures largely
contribute to these good forecasting results. As mentioned
in subsection V-A, they are closely related to the trans-
port service. Therefore, they significantly benefit from the
incorporation of this information, their average WMAPE



TABLE I
COMPARISON OF THE FORECASTING RESULTS FOR DIFFERENT METHODS AND CATEGORIES OF FLOWS (AVERAGE WMAPE IN %)

Passenger flows
Dynamic Bayesian network

Historical average LOCF
(complete) (w/o transport service) (w/o rel. between adj. flows)

At train departures 17.8 37.3 21.1 40.3 63.7
From public to controlled areas 19.0 19.0 19.0 16.9 24.0
From controlled to public/controlled areas 22.6 23.7 24.8 22.2 31.6

All passenger flows 18.5 30.9 20.7 32.1 49.6
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Figure 2. Actual and predicted values of the passenger flow from Blanche station to Place de Clichy station (April 7 to 9, 2015, from 7.30 to 9.30 am).

dropping from 37.3% to 17.8%. By contrast, historical
average and LOCF perform poorly for this category of flows,
with average WMAPEs of 40.3% and 63.7% respectively.

Fig. 2 shows the actual and predicted values of the flow
from Blanche station to Place de Clichy station (WMAPE
of 17.7%) for the test days from 7 to 9 April 2015. It well
illustrates the ability of the model to fit the large fluctuations
that are inherent in the transport service.

The relationships between the adjacent flows play an
important role in the modeling. Their contribution is clearly
visible for the flows measured at train departures (average
WMAPEs of 17.8% versus 21.1% without these relation-
ships) and, to a lesser extent, for those from controlled to
public or other controlled areas (22.6 % versus 24.8 %). This
is probably one of the reasons why our approach is slightly
less effective than historical average for the passenger flows
from public to controlled areas (average WMAPEs of 19.0%
versus 16.9%). Indeed, these flows are located at the edges
of the application area and do not have upstream flows.
Hence, they only depend on their historical values and
cannot exploit the full potential of the model.

The relatively good performance of historical average
seems surprising, but it reflects some day-to-day regular-
ity of the flows. This is also the case for the passenger
flows leaving controlled areas to public or other controlled
areas, for which the forecasting results of this method are
approximately equivalent to those of our approach (average
WMAPEs of 22.2% and 22.6% respectively).

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a dynamic Bayesian network
approach for short-term urban rail passenger flow forecast-
ing, which is able to provide real-time predictions in case

of incomplete data. Based on the work of Sun et al. [19],
our model exploits the spatiotemporal neighborhood of the
flows to predict their future values. We extend this principle
to public transport networks by proposing a structure that in-
tegrates the transport service. In the presence of incomplete
data, we use the structural EM algorithm to learn both the
structure and the parameters. Then short-term forecasting is
performed efficiently by the bootstrap filter. The results of
the experiment demonstrate the overall effectiveness of the
approach and highlight the key role of the transport service.

Despite these encouraging results, our approach still has
limitations. First, the choice of conditional linear Gaussian
distributions implies that the relationships between the flows
(and the transport service variables) are linear, which can be
questionable. Therefore, we may wonder whether the use of
distributions that allow to model nonlinear processes, such
as Gaussian mixture models, would be more appropriate.

Another drawback is that the structure and the parameters
of the model do not evolve over time. Yet in very disturbed
conditions, the interactions between the flows may change
to patterns that have never been observed (and thus learned).
The difficulties of the model in fitting these situations may
result in decreased forecasting performance.

As shown by the results of the experiment, our approach
still needs to be improved, especially for the flows located
at the edges of the application area. In future work, we
could introduce new factors, such as temporal features (e.g.,
day of the week, month of the year, vacation) and external
conditions (e.g., weather, sporting or cultural events). In
order to investigate the performance of the model more
deeply, we should also extend the application area to the
flows related to other lines of the transport network and
collected during other periods.
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