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ABSTRACT
This paper deals with the Two-Dimensional Cutting Stock
Problem with Setup Cost (2CSP-S). This problem is com-
posed of three optimization sub-problems: a 2-D Bin Pack-
ing (2BP) problem (to place images on patterns), a Linear
Programming (LP) problem (to find for each pattern the
number of stock sheets to be printed) and a combinatorial
problem (to find the number of each image on each pat-
tern). In this article, we solve the 2CSP-S focusing on this
third sub-problem. A genetic algorithm was developed to
automatically find the proper number of each image on pat-
terns. It is important to notice that our approach is not
a new packing technique. This work was conducted for a
paper industry company and experiments were realized on
real and artificial datasets.

Keywords
Two-dimensional cutting stock problem, Setup cost, Combi-
natorial optimization, Genetic algorithms, Paper industry.

1. INTRODUCTION
The classical Cutting Stock Problem (CSP) deals with the

problem of cutting stock materials (paper, steel, glass, etc.)
in order to satisfy the customer demand while minimizing
the trim loss [13, 4, 2, 19, 12]. The Bin Packing Problem,
where a set of items must be grouped into bins, and the
CSP belong to the same family of problems. In literature,
several methods were developed in order to solve this couple
of problems, including linear programming, heuristics, and
meta-heuristics [2, 4, 5, 9, 13, 19, 12]. In CSP, a sufficient
number of setups/patterns are used to solve the problem.
In some real-world applications, optimizing the number of
patterns is important because the manufacturing cost of one
pattern can be expensive in regard to the cost of one stock
sheet. The Pattern Minimization Problem (PMP) tries to
minimize the number of different cutting patterns while sat-
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isfying the demand [1, 14]. The Cutting Stock Problem with
Setup Cost (CSP-S) takes into account the cost of the setup
and the cost of the stock sheet printed in order to mini-
mize the total production cost [10, 15, 18]. Most of existing
papers deal with one dimensional problems [8, 3, 6].

In this paper, we give a solution to the Two-Dimensional
Cutting Stock Problem with Setup Cost (2CSP-S). In this
problem, customer demands are the number of prints of sev-
eral rectangular images. The goal consists of satisfying cus-
tomer demands while minimizing the total production cost
(stock sheet cost and setup cost) by automatically fixing:
the number of patterns, the number of stock sheets to be
printed for each pattern, the number and the position of
each rectangular image on patterns. Here, we do not solve
a 2-D bin cutting (or packing) problem (where the number
of objects to be placed is known); in this work the number
of objects (rectangular images) to be set on each pattern is
unknown (only the demands are known). Our objective is to
find the best number of each image on each pattern (and to
find the optimal number of patterns). For this purpose, we
developed a genetic algorithm combined with different other
techniques and heuristics. 2BP and LP sub-problems of the
2CSP-S are solved by well-known algorithms. In our case,
images could be rotated by 90◦. This positioning consists in
placing images without overlap. Positions of images have to
satisfy the guillotine cut constraint meaning that the cut-
ting must be a sequence of edge-to-edge cuts parallel to the
edges of the pattern.

Section 2 presents the mathematical formulation of the
2CSP-S and sets out an example case as way of explana-
tion. Our algorithm with all specific methods are detailed
in Section 3. Results are presented in Section 4. This work
was conducted for the Seripress1 company, which is a paper
industry company.

2. PROBLEM DEFINITION

2.1 Mathematical formulations
Let I be the set of n rectangular images. An image i

is defined by its width wi, its height hi and its demand di
(the number of prints of image i). Let J be the set of m
patterns with the same size H ×W . The number m is un-
known. Let pji be the number of image i in the pattern j.
We note pj = (pj1, . . . , pjn). Let πj be a placement (rectan-
gle packing) of all the images of the pattern j (πj includes

1http://www.seripress.com/



exact position and rotation information). The set of possi-
ble positions is limited by the algorithm (see Section 3.2).
Thereby, a pattern j could be defined as the couple (pj , πj).
In the following of this paper, we shall only consider feasible
couples (pj , πj) (i.e. with feasible placement). Let xj be the
number of stock sheets to be printed for the pattern j. The
decision variables are: m, pj , xj and πj ∀j ∈ J .

The main objective (fitness) is to minimize the total cost:

f(m,x1, . . . , xm) = mCsu + Css

∑
j∈J

xj (1)

where Csu is the manufacturing cost of one setup, and Css

is the printing cost of one stock sheet.
To satisfy the demand di requested for each image i, there

are n constraints: ∑
j∈J

pjixj ≥ di ∀i ∈ I (2)

These n constraints and the objective function f (defined
by Equation 1) define an integer linear program (where the
decision variables are xj∈J).

A solution of 2CSP-S is composed of a tuple ((p1, π1), . . . ,
(pm, πm)) and a tuple (x1, . . . , xm) which is the solution of
the integer linear program defined above. Let S be the set
of all possible solutions.

In order to take into account the overproduction in our
model, we define ri as the quantity of images i overproduced
and OverP the total overproduction:

ri =
∑
j∈J

pijxj − di ∀i ∈ I and OverP =
∑
i∈I

ri (3)

In our model, the main objective is the minimization of the
fitness f (see Equation 1). But if two solutions s and s′ of S
have the same fitness f then the one which minimize OverP
is chosen. Thereby, a method called BestSolution(s,s′) is
used to return the best solution between s and s′. This
method combines f and OverP.

2.2 Example
In order to illustrate the 2CSP-S problem, a simple exam-

ple is displayed with 4 customers demands given in Table 1.
The pattern size is equal to 60× 40.

Table 1: Width, height and demand of the 4 images.

Image Height Width Demand
1 30 24 246
2 56 13 562
3 22 14 1000
4 23 9 3498

pattern 60 40

The objective is to reduce the total material cost depend-
ing exclusively on Csu and Css (see Equation 1). Here,
Csu = 20$ and Css = 1$. As an example, calculations
have been performed with one pattern (m = 1) and with
two patterns (m = 2). Results are displayed in Figures 1
and 2. In all the figures of this paper, a star (?) next to the
image number indicates that the corresponding image was
rotated 90◦. As shown in Table 2, the best solution is got
with two patterns (see Figure 2) even if the manufacturing

cost of one setup is 20 times greater than the printing cost
of one stock sheet.

Figure 1: Solution with 1 pattern (3498 prints).

Figure 2: Solution with 2 patterns (246 + 562 = 808 prints).

Table 2: Costs of solutions of Figures 1 and 2

Nb patterns Total cost
1 1× 20$ + 3498× 1$ = 3518$
2 2× 20$ + 808× 1$ = 848$

It is important to understand that the best result is not
achieved by fully completing all the patterns. This means
that we cannot use the blank area rate to define the qual-
ity of a solution or the quality of a pattern (unlike what is
done in [5] to select parts of solutions in their genetic algo-
rithm). According to the overproduction, with one pattern,
the overproduction is very large: 3498 copies of the images
1, 2 and 3 are printed, instead of respectively, 246, 562 and
1000 copies. With two patterns, only 54 copies of the image
3 and 50 copies of the image 4 are overly printed.



2.3 Bounds
We first calculate a lower bound L0 of the number of pat-

terns:

L0 =

⌈∑
i∈I hiwi

H ×W

⌉
(4)

L0 corresponds to the minimum number of patterns when
positioning only one copy of every image with no unoccupied
areas on the patterns. Thus, m ≥ L0.

We define the upper bound Lmax(i) of the number of im-
ages i which can be placed on one pattern as:

Lmax(i) =

⌊
H ×W
hiwi

⌋
(5)

Lmax(i) is the theoretical maximum number of image i in
one pattern. It is used to limit the process of adding an
image in a pattern when building the neighborhood of a
solution.

3. OUR ALGORITHM
2CSP-S is a combination of three optimization sub-problems:

i) a 2-D Bin Packing (2BP) problem which consists of
finding the placement (π1, . . . , πm) of all images on the
m patterns,

ii) a Linear Programming (LP) problem which consists of
finding the number (x1, . . . , xm) of stock sheets to be
printed for each pattern,

iii) a combinatorial problem which consists of finding the
proper tuple (p1, . . . , pm) where pj = (pj1, . . . , pjn)
and pji is the number of image i in the pattern j (and
find the number of patterns m).

In this paper, we present our genetic algorithm used to solve
the sub-problem iii): find the proper number of each image
on each pattern. A well-known algorithm (see Section 3.2)
and a classical linear programming solver were used to solve
the sub-problems i) and ii). The following subsections de-
tail each part of our genetic algorithm to solve the sub-
problem iii).

One important constraint of this work is the limitation
of the computation time. Indeed, this work was developed
in order to be applied to a real-world problem in the paper
industry. Therefore, in the following we always took into
account this time constraint in our choices. By construction,
our algorithm has a very small memory footprint.

3.1 Stock sheets prints
The fitness, f(s), of a solution s ∈ S is a combination

of the total cost given by Equation 1 and overproduction
quantities. In order to compute this fitness, the number of
stock sheets to be printed (x1, . . . , xm) have to be computed.
As explained in Section 2.1, f(s) is the result of an integer
programming problem. Indeed, given a tuple (p1, . . . , pm)
which represents the numbers of all images in the m pat-
terns (this tuple will be found by our genetic algorithm),
the aim is to find (x1, . . . , xm) minimizing Equation 1 under
constraints given by Equation 2.

As we must evaluate the fitness of each solution during
our algorithm, it is crucial to optimize this phase. Thereby,
the corresponding relaxation problem (real-LP) is solved and
the solution (x∗1, . . . , x

∗
m) rounded to upper whole numbers

(dx∗1e, . . . , dx∗me) is returned. Thus, the number of stock
sheets to be printed xj = dx∗j e ∀j ∈ J .

The method which calculates the number of stock sheets
to be printed and the fitness of the solution s is called
ComputePrintsAndFitness(s). The time complexity of this
method is denoted by cpaf(n,m).

3.2 2-D bin packing algorithm
In order to deal with only feasible solutions, a 2-D Bin

Packing (2BP) algorithm has to be used to build the place-
ment (π1, . . . , πk) on k patterns according to a list of images
(q1, . . . , qn), where qi is equal to the number of image i.
There are several methods to make a 2BP from a list of
images [11, 13]. In our case, we slightly adapted an exist-
ing algorithm, named maximal rectangles best short side fit,
which satisfies the guillotine cut constraint and which is one
of the best constructive algorithms of [11].

In the following, this method is called 2DBinPacking(q),
where q = (q1, . . . , qn) is a n-tuple of the total number qi of
each image i. The output is a list (π1, . . . , πk) of placements
on k patterns. As, this algorithm is deterministic, a tuple
(q1, . . . , qn) always corresponds to the same placement (and
then, on the same number of patterns).

According to [11], the time complexity of this method is
O(n2

q) (where nq =
∑

i∈I qi).

3.3 Neighborhood of a solution
To create some random initial solutions, to build the mu-

tation operator or to improve a solution with an hill-climbing
process, we define a neighborhood of any solution s by mod-
ifying the tuple (p1, . . . , pm).

Let s ∈ S be a solution composed of a vector (π1, . . . , πm)
according to a tuple (p1, . . . , pm), and a vector (x1, . . . , xm)
which is the solution of the relaxed linear program (see Sec-
tion 3.1). A neighbor of s is built from one of these four
elementary operators: add, remove, move and swap. The
operator add adds one image i in the pattern j involves in-
crementing pij if pij is less than Lmax(i). The operator
remove consists of removing one image i from the pattern j
involves decrementing pij if the total number of image i in
the whole solution s remains strictly positive. The opera-
tor move moves one image from a pattern to another one,
and the operator swap swaps two images from two different
patterns.

A neighbor of a solution is generated by randomly select-
ing one elementary operator, and then by randomly select-
ing one (add and remove) or two (move and swap) patterns,
and one (add, remove and move) or two (swap) images in
these patterns. Of course, these elementary operators can
lead to an unfeasible solution (unfeasible placement). So,
the method 2DBinPacking(pj) (see Section 3.2) is applied
on each modified pattern j in order to check the placement
feasibility and to build πj (if feasible).

Thereby, the method ChooseNeighbor(s) chooses a neigh-
bor of s, checks the feasibility on each modified pattern and
returns either the solution corresponding to this neighbor,
or null if there is no feasible packing.

The time complexity of this method only depends on the
2DBinPacking complexity.

3.4 Initial solution generator
To create the initial population, some feasible solutions

have to be generated. The first step of our process is inspired



by [10]. The objective is to place only one copy of each image
i on k patterns. Thus, the method 2DBinPacking(q1, . . . , qn)
is run with qi = 1 ∀i ∈ I. The objective is to place only one
copy of each image i in the solution. The method returns a
feasible placement (π1, . . . , πk). An initial feasible solution
s0 is created from this placement. Then, from s0, a ran-
dom walk, RandomWalk(s0), is performed: a solution s1 is
chosen in the neighborhood of s0, a solution s2 is chosen in
the neighborhood of s1, and so on, until a fixed iterations
number NbWalk.

A method CreateInitialPopulation() returns a list ofNbPop
random initial solutions. The time complexity is O(NbPop×
(NbWalk×n2

max+cpaf(n,m))), where nmax is the total num-
ber of images in q during the random walk.

3.5 Main algorithm
Our algorithm, GA-2CSP-S (see Algorithm 1), combines

all the previous methods: the Crossover and the Mutation
operators (see Sections 3.6 and 3.7) in a classical genetic
algorithm.

There are NbGen generations (loop line 5). The population
at the kth generation is denoted by Pk. Each generation is
composed of NbPop solutions.

Line 6, the RouletteWheelReproduction(Pk−1) method re-
produces a population composed of NbPop solutions accord-
ing to the classical fitness proportionate selection (roulette-
wheel selection). Thus, it returns an intermediate popu-
lation P ?

k−1 selected from Pk−1. In order to create a new
generation Pk, the NbBest best solutions of Pk−1 are first
reproduced (elitist strategy) in Pk (line 7). Then Pk is filled
up to the full size by generating solutions either through our
crossover method Crossover(P ?

k−1) (line 10) or our mutation
method Mutation(P ?

k−1) (line 12). Crossover and Mutation
operators are detailed in Sections 3.6 and 3.7. At each step,
the best found solution is updated from the set of all gener-
ated solutions (line 15).

Algorithm 1 GA-2CSP-S

1: function GA-2CSP-S
2: BestKnown← new Solution()
3: P0 ← CreateInitialPopulation()
4: BestKnown← UpdateBestSolution(P0)
5: for k ← 1 to NbGen do
6: P ?

k−1 ← RouletteWheelReproduction(Pk−1)
7: Pk ← BestSolutionsReproduction(NbBest,Pk−1)
8: for i← NbBest+1 to NbPop do
9: if Random(0, 1) < ProbaCross then

10: add Crossover(P ?
k−1) to Pk

11: else
12: add Mutation(P ?

k−1) to Pk

13: end if
14: end for
15: BestKnown← UpdateBestSolution(Pk)
16: end for
17: HillClimbing(BestKnown)
18: DeleteOverproduction(BestKnown)
19: return BestKnown
20: end function

At the end of this algorithm, a local improvement is ap-
plied on the best found solution with a hill-climbing process
followed by an overproduction removal (line 18) from the
population P ?

k−1.

This HillClimbing(s) method locally improves a solution
s. This algorithm searches the best neighbor s′ of s; if s′ is
better than s, it repeats this search from s′ and so on, until
no further improvements can be found. Instead of building
all the neighbors of the curent solution, we randomly gen-
erate a given number of neighbors in the neighborhood of
the current solution and select the best one. This method is
used in Algorithm 1 line 17 and in our crossover and muta-
tion operators.

The DeleteOverproduction(s) method was developed in or-
der to delete some overproduced images i of s (where ri > 0,
see Equation 3) which do not affect the computation of stock
sheet prints (see Section 3.1). An image i can be deleted on
a pattern j if ri ≥ xj .

According to the complexities of Crossover and Mutation
operators (see Sections 3.6 and 3.7), the time complexity of
our main algorithm is equal to O(NbGen× NbPop× (n2

max +
cpaf(n,m))).

3.6 Crossover operator
The crossover method, Crossover(P ) (described by Algo-

rithm 2), builds a new offspring from two different parent
solutions (lines 3-4). At first the offspring is initialized to
empty (0 pattern). A subset of patterns is randomly selected
in the first parent and another one in the second parent
(lines 5-6). The number of patterns selected in each par-
ent is a random number, it is a percentage of the parents’
patterns numbers, taken in [25%, 50%]. These patterns are
transferred in the offspring (line 7). As explained in Sec-
tion 2.2, the choice of patterns in parents was realized as
in [5] because the blank area rate can not be used as a qual-
ity of a pattern. Then, the offspring is completed with the
help of the 2DBinPacking(q) with qi = 1 for all missing
items i (line 8).

The total offspring’s patterns number could be different
from its parents, then a larger part of space solutions could
be explored.

Algorithm 2 Crossover process

1: function Crossover(P )
2: OffSpring← new Solution()
3: Parent1← choose a solution ∈ P
4: Parent2← choose a different solution ∈ P
5: SetPattern1← choose some patterns ∈ Parent1
6: SetPattern2← choose some patterns ∈ Parent2
7: add SetPattern1 ∪ SetPattern2 to OffSpring
8: complete OffSpring with 2DBinPacking(q)

. with qi = 1 for all missing item i in OffSpring
9: HillClimbing(OffSpring)

10: return OffSpring
11: end function

The complexity of Crossover(P ) is O(nqm+ cpaf(n,m))
(where nq =

∑
i∈I qi).

3.7 Mutation operator
The method Mutation(P ) (see Algorithm 3) selects a par-

ent at random in the population P (line 3) and applies a
random walk from this parent (line 4) as done in Section 3.4
when generating initial solutions.

The complexity of Mutation(P ) is O(NbWalk × n2
max +

cpaf(n,m)).



Algorithm 3 Mutation process

1: function Mutation(P )
2: Offspring← new Solution()
3: Parent← choose a solution ∈ P
4: Offspring← RandomWalk(Parent)
5: HillClimbing(Offspring)
6: return Offspring
7: end function

4. EXPERIMENTS
A Java application was developed, using a Java Simplex

Solver package to compute the number of stock sheets (x1,
. . . , xm). Thereby, the complexity O(cpaf(n,m)) depends
on this Simplex Solver package; this complexity is not in
O(n2). Thus, the global time complexity depends primar-
ily on O(cpaf(n,m)) and it is equal to O(NbGen × NbPop ×
cpaf(n,m)). Computations were run on a MacBook Pro
2.2GHz Intel Quad Core i7 16Go.

There are several existing modeling approaches to ma-
nipulate a solution like the graph-theoretical characteriza-
tion [7], the binary tree [17] or the sequence pair [16]. Here,
the 2DBinPacking(q) method stores only the coordinates
and the orientation of each image on each pattern.

4.1 Real-world datasets
The objective of this work was to deal with a real-world

application. Every day the company gets a dataset com-
posed of 40 to 50 images. The size of patterns is always
equal to 88× 59 cm2. The spacing between two side by side
images must be equal to 1.6 cm. Thus, we added 0.8 cm to
height and width of each image. The costs are Csu = 20$
and Css = 1$. An example of this kind of data, composed
of 40 images, is displayed in Table 3.

Table 3: Example of a daily dataset of the company.

i hi wi di i hi wi di
1 13.2 8.9 62 21 13.2 8.9 530
2 13.2 8.9 31 22 19.4 13.2 100
3 18.5 14.9 500 23 40.4 28.1 80
4 40.4 28.1 10 24 28.1 19.4 25
5 21.9 17.2 250 25 40.4 28.1 31
6 4.9 2.0 250 26 31.0 22.0 400
7 13.2 8.9 200 27 40.4 28.1 10
8 40.4 28.1 45 28 40.4 28.1 10
9 20.0 18.2 500 29 40.4 28.1 10
10 28.1 19.4 10 30 19.4 13.2 110
11 28.1 19.4 45 31 40.4 28.1 25
12 19.4 13.2 160 32 40.4 28.1 50
13 22.7 22.0 100 33 40.4 28.1 20
14 9.0 5.0 10 34 33.0 22.0 74
15 13.2 8.9 25 35 20.0 4.7 510
16 13.2 8.9 25 36 28.1 19.4 300
17 13.2 8.9 25 37 13.2 8.9 120
18 13.2 8.9 25 38 28.1 19.4 15
19 13.2 8.9 25 39 13.2 8.9 35
20 13.2 8.9 50 40 40.4 28.1 100

pattern 88.0 59.0

In the company, creation of patterns (choice and place-

ment of images) is done daily by an employee by hand tak-
ing more than one hour. From the dataset of Table 3, the
solution found by the company was composed of 5 patterns
and required 815 stock sheets printed. The total cost is
equal to 915$. From the same dataset, our algorithm took
505 seconds to automatically find a solution with 6 patterns
but with only 493 stock sheets printed. In our case, the total
cost is equal to 613$, which is a gain of 33.0% (see Figure 3).

Figure 3: Best solution found by our algorithm from the
dataset displayed in Table 3: 6 patterns and a total of 493
stock sheets printed (total cost: 613$).



Parameters for this calculation are: NbGen = 30, NbPop =
60, NbBest = 10, ProbaCross = 0.75 and NbWalk = 10000.
These parameters were obtained from some experimental
tests. For example, these tests showed that a large popula-
tion was better than a higher number of generations.

We tested our algorithm on 20 datasets of the company
and our results were consistently better (in terms of costs)
than those from its currently used method. In 100% of cases,
these better results are obtained by reducing the number of
stock sheets printed, and in 20% of cases by modifying the
number of patterns. The mean gain of stock sheets printed
was equal to 26.1%, and the mean percentage of cost im-
provement was equal to 22.2%.

Overall, the three main advantages are: the automatiza-
tion of the process, the reduction of the manufacturing time
and the global cost reduction.

4.2 Artificial datasets
The best evaluation of our algorithm was presented in

the previous section on some real datasets of the Seripress
company. However, it would be interesting to compare our
algorithm to those already published in the literature. The
difficulty is to perform a real comparison because most of
other studies deal with some slightly different problems (in
one-dimension, with a fixed orientation, with no guillotine
constraint...). Moreover, papers dealing with a similar prob-
lem to ours do not compare their results to other algorithms.
Indeed, in these papers, a kind of “best” solution is either a
lower bound, which is not relevant in 2CSP-S problem, or
a solution calculated by their own algorithm during a very
long time (2, 3 or 4 hours of calculations). According to
this “best” solution, authors calculate the gap between this
solution and solutions given by their algorithm. Thus, no
comparison could be performed.

However, we uploaded some datasets created by [10] and
we tested our algorithm on these datasets. These datasets
are composed of four different numbers of images (20, 30,
40 and 50 images), three different types of demands (type
S randomly taken from [1, 25], type L taken from [100, 200]
and type V taken from either [1, 25] or [100, 200]) and two
different pattern size (α for 1400×700 and δ for 2800×1400).

Table 4: Dataset 30Sα created by [10].

i hi wi di i hi wi di
1 894 417 25 16 344 318 7
2 763 433 13 17 385 263 8
3 624 430 19 18 260 380 17
4 949 262 2 19 778 118 3
5 778 318 22 20 663 126 5
6 593 415 23 21 158 489 1
7 960 256 7 22 810 83 20
8 907 248 17 23 248 229 5
9 462 468 4 24 259 179 6
10 873 234 15 25 233 177 1
11 595 333 16 26 143 281 10
12 673 246 23 27 384 87 15
13 844 185 12 28 165 173 11
14 894 174 23 29 162 175 24
15 422 323 24 30 208 98 24

pattern 1400 700

Figure 4 displays a solution given by our algorithm from
the dataset named 30Sα (see Table 4), with the same pa-
rameters as the previous ones.

Figure 4: Best solution found by our algorithm from the
dataset 30Sα: 5 patterns and a total of 99 stock sheets
printed (total cost: 199$).

The averages of running time are summarized in the left
side of Table 5. We applied our algorithm 10 times to each
dataset. For each dataset, the theoretical lower bound L0,



the average number of patterns (column m), the average
number of stock sheets printed (column prints), the aver-
age total cost (column cost) and the average CPU time in
seconds (column time) are displayed. As in the previous
subsection, the manufacturing cost of one setup Css is equal
to 1$ and the printing cost of one stock sheet Csu is equal
to 20$. The best solutions found from these 10 runs on each
dataset are displayed in right side of Table 5.

We can logically observe that as the number of images
increases (from 20 to 50), m becomes larger and the compu-
tational time increases.

For datasets with small demands (type S) the total num-
bers of stock sheets printed are small in regard to the setup
cost of one pattern (Csu = 20$), thus adding a pattern pe-
nalizes the total cost of solutions. That is the reason why
solutions are composed of a small number of patterns. The
gap between the setup cost of one pattern (Csu = 20$) in-
creases with the total demand of datasets of type V and L.
The more demands there are, the more the addition of a pat-
tern influences the best solution (see Figure 2). For datasets
with a large pattern size (type δ) the number of patterns is
logically smaller than for datasets with a smaller pattern
size (type α). Even if the number of patterns is lower, the
running time is greater because the number of images on
patterns of type δ is much larger than the number of images
in the small patterns (type α).

The average values (m, prints, cost and time) are always
close to those of the best solution; thus, even if it is a non-
deterministic process, our algorithm is fairly stable.

As explained at the begin of this section, it is difficult to
compare our results to existing ones. It is all the more so
difficult as the results depend on the prices of the manufac-
turing cost of one setup Css and the printing cost of one
stock sheet Csu. Figure 5 displays the influence of prices
on the average number of patterns computes from 10 runs
on the dataset 30Vα (the price of the printing cost of one
stock sheet Csu is constant and equal to 1$). It shows that
the number of patterns of the best found solution decreases
(from 9.2 to 7.2) when the price of the manufacturing cost
of one setup increases (from 1$ to 25$). A decrease of m is
observed with all the datasets of this study.

Figure 5: The influence of the manufacturing cost of one
setup (Css) on the average number of patterns. These aver-
age numbers are obtained from 10 runs on the dataset 30Vα
(Css is constant and equal to 1$).

5. CONCLUSION
We developed a genetic algorithm, combined with sev-

eral other techniques and heuristics, especially designed to
deal with the Two-Dimensional Cutting Stock Problem with
Setup Cost. Our algorithm was applied to real-world appli-
cations in paper industry. The obtained results are very
significant and very useful for the company. They improve
the manufacturing time (solutions are automatically built in
few minutes) and the global cost. Moreover, it is an algo-
rithm which is able to return a feasible solution at any time
of the process.

Some additional work is currently in progress. These
works attempt to improve the computation time and the
quality of solutions. The use of some better 2-D Bin Pack-
ing algorithms should improve the placement process and
thus improve the quality of the final solution, but it should
increase the computation time too.

In the crossover process developed in [5], patterns (layers)
are selected according to the filling rate. As the filling rate
makes no sense in 2CSP-S, patterns are randomly selected
in our Crossover operator. To overcome this, a new quality
definition of a pattern or of a subset of patterns should be
defined to improve our algorithm.

The Seripress company has some new colorimetric con-
straints: images with same color must be set side by side.
We are going to adapt our algorithm to take into account
these new constraints.

Finally, some parallelization processes could be added in
the main algorithm. For example, initial solutions and off-
springs could be generated in parallel in order to decrease
the running time.
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